Пусть для определенности в каждом сосуде было по 1 л раствора, в котором x л кислоты. Тогда в 1 сосуде после 1 переливания будет
x*(1 - m)/1 л кислоты. А после 2 переливания будет
x*(1 - m)^2 л кислоты.
Точно также во 2 сосуде после 2 переливания будет
x*(1 - 2m)^2 л кислоты.
И по условию эти объемы относятся друг к другу как 26/16 = 13/8.
x*(1 - m)^2 : [x*(1 - 2m)^2] = 13/8
(1 - m)^2 : (1 - 2m)^2 = 13/8
8(1 - m)^2 = 13(1 - 2m)^2
После раскрытия квадратов получаем:
8m^2 - 16m + 8 = 52m^2 - 52m + 13
44m^2 - 36m + 5 = 0
D/4 = 18^2 - 44*5 = 324 - 220 = 104
m1 = (18 - √104)/44 ~ 0,1773; m2 = (18 + √104)/44 ~ 0,6408
Но во 2 случае объем 2m = 1,2816 > 1 л, поэтому не подходит.
ответ: 0,1773 часть объема раствора
Но мне кажется, что в задаче ошибка, должно быть 25/16.
Тогда решение намного проще.
(1 - m)^2 : (1 - 2m)^2 = 25/16
(1 - m) : (1 - 2m) = 5/4
4(1 - m) = 5(1 - 2m)
4 - 4m = 5 - 10m
6m = 1
m = 1/6 часть объема раствора
Интервал возрастания функции:
x∈(0;5]
Интервал убывания функции:
x∈(-3;0]
Экстремум функции
(в соответствующее окно вводи целое число — положительное или отрицательное): f(0) = -1
Это: минимум функции
a) наибольшее значение функции f(-3 ) = 8
б) наименьшее значение функции f(0) = -1
a) функция положительна, если
x∈[−3;−1)∪(1;5]
б) функция отрицательна, если
x∈(−1;1)
Функция :
ни чётная, ни нечётная
Нули функции (выбери несколько вариантов ответов):
x=−1
x=1
a) точки пересечения с осью x (-1;0) и (1;0) (вводи координаты точек в возрастающей последовательности, не используй пробел);
б) точка пересечения с осью y (0;-1)
(вводи координаты точек, не используя пробел; у точек, у которых невозможно определить точные координаты, вводи приближенные значения до двух цифр после запятой).
привет, из интернетУрока)))
Объяснение:
Объяснение:Самый универсальный и могучий Функция, заданная аналитически, это функция, которая задана формулами. Собственно, это и есть всё объяснение.) Знакомые всем (хочется верить!)) функции, например: y = 2x, или y = x2 и т.д. и т.п. заданы именно аналитически.
К слову сказать, не всякая формула может задавать функцию. Не в каждой формуле соблюдается жёсткое условие из определения функции. А именно - на каждый икс может быть только один игрек. Например, в формуле у = ±х, для одного значения х=2, получается два значения у: +2 и -2. Нельзя этой формулой задать однозначную функцию. А с многозначными функциями в этом разделе математики, в матанализе, не работают, как правило.
Чем хорош аналитический задания функции? Тем, что если у вас есть формула - вы знаете про функцию всё! Вы можете составить табличку. Построить график. Исследовать эту функцию по полной программе. Точно предсказать, где и как будет вести себя эта функция. Весь матанализ стоит именно на таком задания функций. Скажем, взять производную от таблицы крайне затруднительно...)
Аналитический достаточно привычен и проблем не создаёт. Разве что некоторые разновидности этого с которыми сталкиваются студенты. Я про параметрическое и неявное задание функций.)
Решение : //////////////////////////////