1. x² - 6x + 9 = 0
D = 0
x = -b/2a = 6/2 = 3
Відповідь: в) 1
2. x² - 7x = -6
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ + x₂ = 6 + 1 = 7
Відповідь: а) 7
3. x² - 7x + 6 = 0
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ · x₂ = 6 · 1 = 6
Відповідь: г) 6
4. x² - 15x + 56 = 0
x² - 7x - 8x + 56 = 0
x(x - 7) - 8(x - 7) = 0
(x - 7)(x - 8) = 0
x - 7 = 0
x₁ = 7
x - 8 = 0
x₂ = 8
Відповідь: в) 7i 8
как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
a = 1/3
27 * ( 1/3 )^3 + 1 = 27 * ( 1/27 ) + 1 = 1 + 1 = 2