1a) строим график функции это парабола с центром в точке (2,5; -0,25) и ветвями вверх она пересекает ось Ох в точках 2 и 3 (см. рисунок 1) ответ: х ∈(-∞;2) U (3; +∞) 1б) это парабола с центром в точке (0; 2) и ветвями вверх (см. рисунок 2) она вся лежит выше оси Ох, кроме х=2, в этой точке достигается равенство, но т.к. неравенство строгое, из ответа эту точку "выкалываем" ответ: х∈(-∞; 2) U (2; +∞) 2) выкалываем на числовой оси точки, которые обращают левую часть неравенства в ноль. Х1=-3; Х2=5; Х3=8. Расставляем знаки на получившихся промежутках (см. рисунок 3). Т.к. в неравенстве знак "меньше", выбираем промежутки с "минусом". ответ: х ∈ (-3; 5) U (5; 8)
5х^2-11х-5-7х^2 -2х^2-11х-5<0 |*(-1) 2х^2+11х+5>0 Решаем как квадратное уравнение: D=121-40=81 X=-11+-9/4 x1=-5 x2=-1/2 Раскладываем на множители (х+5)*(х+1/2)>0 Решаем через метод интервалов: Чертим координатную прямую и выставляем на неё нули уравнения, то есть -5,-1/2: (-5)(-1/2)> Точки выколотые, так как знак > строгий и эти точки в ответы не будут Начинаем определять знаки каждого интервала, начиная с крайнего правого, а именно: х>-1/2 Берём число больше -1/2, например ноль И подставляем значение в (х+5)(х+1/2)>0 Вычислять значение необязательно, главное понять какой в итоге знак будет В первой скобке получается положительный и во второй тоже положительный ++=+, значит интервал положительный По аналогии делаем с интервалами: -5<х<-1/2---> получается отрицательным х<-5---> получается положительным Теперь координатная прямая выглядит вот так: (-5)(-1/2)> + - + Нас интересуют значения больше нуля, так как знак > Значит в ответе будут только да положительных интервала (-~;-5);(-1/2;+~) Простите за дурацкую координатную прямую ~ это бесконечность, пишется как перевёрнутая восьмёрка, на телефоне просто нет Надеюсь, всё понятно:)
см скриншот
===================