Объяснение:
1. x^2 - 4x - 32 = 0
D = (-4)^2 - 4 * 1 * (-32) = 16 + 128 = 144
x₁ = (4 - √144) / 2 = (4 - 12) / 2 = -4
x₂ = (4 + √144) / 2 = (4 + 12) / 2 = 8
x^2 - 4x - 32 = (x + 4) * (x - 8)
4x^2 - 15x + 9 = 0
D = (-15)^2 - 4 *4 * 9 = 225 - 144 = 81
x₁ = (15 - √81) / (2 * 4) = (15 - 9) / 8 = 0,75
x₂ = (15 + √81) / (2 * 4) = (15 + 9) / 8 = 3
4x^2 - 15x + 9 = 4 * (x - 0,75) * (x - 3) = (4x - 3) * (x - 3)
2. x^4 - 35x^2 - 36 = 0
Пусть t = x^2
t^2 - 35t - 36 = 0
D = (-35)^2 - 4 * 1 * (-36) = 1225 + 144 = 1369
t₁ = (35 - √1369) / 2 = (35 - 37) / 2 = -1
t₂ = (35 + √1369) / 2 = (35 + 37) / 2 = 36
Вернёмся к замене
x^2 = -1
x = ±√-1
x = ± i
x^2 = 36
x = ±6
x + 2 ≠ 0 ⇒ x ≠ -2
Умножим обе части дроби на x+2
x^2 - 7x -18 = 0
x₁ = -2 - не имеет смысла
ответ : 9
3. 4a^2 + a - 3 = 0
D = 1^2 - 4 * 4 * (-3) = 1 + 48 = 49
a₁ = (-1 - √49) / (2 * 4) = (-1 - 7) / 8 = -1
a₂ = (-1 + √49) / (2 * 4) = (-1 + 7) / 8 = 0,75
4a^2 + a - 3 = 4 * (a + 1) * (a - 0,75) = (a + 1) (4a - 3)
-------------------
Найти восьмой член и сумму первых восьми чисел геометрической прогрессии, если b₁= - 18, q=1/3.
------------------
b₈ =b₁*q⁷ = - 18*(1/3)⁷ = -2*3² /3⁷ = -2/3⁵ = - 2/243 .
S₈ =b₁(1 - q⁸) / (1-q) * * * = b₁(q⁸ - 1) / (q -1) * * *
S₈ =(b₁ - b₁q⁷*q ) / (1- q) =(-18 +(2/243) *(1/3) ) / (1-1/3) =
(-18 +(2/243) *(1/3) ) * (3/2) = - 27 +1/ 243 = [ - 26 ] 242/243 .