1. Укажите линейное уравнение с двумя переменными.
1) 3·x-5=0 - только одна переменная х
2) х/7-у/5=8/3 - линейное, переменные х и у
3) 7/х+5/у=3/8 - нелинейное
4) 7·x²+5·у=3 - уравнение 2-степени
2. Укажите уравнение, решением которого является пара чисел (1 3/7; 2 5/6) .
Проверим подставкой в уравнение:
1) 14·x-12·y+14=0
является решением, поэтому остальные уравнение не нужно проверить
2) 14·x-6·y-10=0
3) 10·x/7+17·y/6=27
4) x-6·y=17
3. Какая пара чисел является решением уравнения 3·x-2·y+5=0
1) (-1/3; -2) 2) (-2; -1/3) 3) (-4/3; -1/2) 4) (-3; 2)
Проверим подставкой в уравнение:
не является решением
не является решением
является решением, поэтому последнюю пару не нужно проверить
4. Какая из пар чисел является решением уравнением 2·x-y=6
1) (2; -1) 2) (5; 3) 3) (1; -4) 4) (-1; -3)
Проверим подставкой в уравнение:
1) 2·2-(-1)=4+1=5≠6 - не является решением
2) 2·5-3=10-3=7≠6 - не является решением
3) 2·1-(-4)=2+4=6=6 - является решением, поэтому последнюю пару не нужно проверить
1 кран заполняет 1 бассейн за х часов, а второй кран за у=(х-3) часа.
Производительность 1 крана равна 1/х бассейна в час, а производительность 2 крана равна 1/(х-3) бассейна в час.
Совместная производительность двух кранов равна 1/х+1/(х-3) бассейна в час.
Вместе оба крана заполняют бассейн за 6 ч 40 мин=6 и 2/3 часа=20/3 часа.
Формула работы: A=p*t , где р - производительность, t - время. Объём работы принимаем за 1.
Тогда совместная производительность обоих кранов равна 1/(20/3)=3/20 бассейна в час .
Составим уравнение:
Число, меньшее 3, не подходит, т.к. по условию x>3.
Бассейн заполняется 1 краном за 15 часов, а 2 краном за 15-3=12 часов.