1)произведение двух натуральных чисел равно 36, при этом одно из них больше другого в четыре раза. найдите эти числа. я поняла что это 12 и 3. но как это 2) система уравнений 2х^2 + у^2=2 х+у=2 3) решите уравнения х^2/х^2-4 = 5х+14/х^2-4)
№1. Пусть I число равно x , тогда II число будет 4х. Зная, что произведение данных чисел = 36 , составим уравнение: х * 4х = 36 4х² = 36 х² = 36 : 4 х² = 9 х₁ = √3² х₁ = 3 - I число х₂ = - √9 х₂ = - 3 не удовлетворяет условию задачи ( - 3 ∉ N - не является натуральным числом ) 4 * 3 = 12 - II число
Синус на промежутке возрастает, а на промежутке - убывает
так как функция синуса периодична с периодом , то: - промежутки возрастания синусоиды и - промежутки убывания синусоиды
Что бы в этом убедится, предлагаю внимательно рассмотреть график синусоиды и/или тригонометрический круг
точка и точка - одна и та же точка на тригонометрическом круге
Что бы ответить на вопросы задания, осталось посмотреть, в какие промежутки попадают углы: и у нас углы оба угла попадают в промежуток убывания. Так как это промежуток убывания, то если выполняется , то будет выполнятся у нас: и тогда
Суть разобрали, и дальше легче. Да и если углы из промежутка возрастания, то если , то выполняется --------------------------------------- углы 13п/7 и 11п/7 оба попадают в промежуток возрастания значит sin( 13п/7 ) > sin ( 11п/7 ) -------------------------------------------- оба угла -8п/7 и -9п/8 попадают в интервал убывания -8п/7 < -9п/8, по этому sin(-8п/7) > sin(-9п/8) ---------------------------------------------- оба угла 7 и 6 попадают в промежуток возрастания 7 > 6 sin(7) > sin(6)
1. Пусть меньше трёх очков набрали n команд. Заметим, что в любом матче разыгрываются два очка, поэтому в (n + 2)(n + 3)/2 матчах среди n + 3 команд разыгрывается (n + 2)(n + 3) очков. С другой стороны, количество очков не больше, чем 7 + 5 + 3 + 2n = 2n + 15, откуда (n + 2)(n + 3) ≤ 2n + 15, n^2 + 3n - 9 ≤ 0, а значит, n = 1. Но среди четырёх команд разыгрываются только 4 * 3 = 12 очков, хотя по условию только призёры набрали 15. Противоречие. ответ: нет.
2. Всего есть 4 * 4 = 16 вариантов. Петя может задать вопросы вида "Ты живешь в одной из квартир:" - и перечислить половину квартир, в которых может жить Маша. Вне зависимости от того, как ответит Маша, количество вариантов после каждого вопроса уменьшится вдвое, значит, после четырёх вопросов количество квартир, в которых может жить Маша, уменьшится до одной: 16 -> 8 -> 4 -> 2 -> 1. ответ: да.