М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
didi20023
didi20023
11.10.2021 10:01 •  Алгебра

Найди корни данного уравнения 3/7⋅y−7=−12+y/7
y=

👇
Ответ:
Ochinchin
Ochinchin
11.10.2021

ответ: ну вроде бы так, ну лучше проверить


Найди корни данного уравнения 3/7⋅y−7=−12+y/7y=
4,7(95 оценок)
Открыть все ответы
Ответ:
AelitaFox
AelitaFox
11.10.2021

Объяснение:

1) Kl=12; KM:ML= 3 : 1

KM=3ML

KM+ML=KL

3ML+ML=12

4ML=12

ML=3

KM=3ML=9

2) AB/ED=YX/LK;   AB= 2 см, ED= 3 см и LK= 27 см

YX=LK·AB/ED=27·2/3=54/3=18

YX=18 см

3) ΔKBC∼ΔRTG;  k= 18;  P₁=8; S₁=9;  P₂=?, S₂=?

Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.

Рассмотрю оба случая:

a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²

P₂=kP₁=8·18=144 см

S₂=k²S₁=8²·9=64·9=576 см²

б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²

P₂=P₁/=18/8=2,25 см

S₂=S₁/k²=9/8²=9/64  см²

4,6(62 оценок)
Ответ:
eklolosmile
eklolosmile
11.10.2021

1. f(x)=2+\sin 4x\\\\F(x)=2x-\frac{\cos4x}{4}+C.\\\\F(\frac{\pi}{4})=-3\pi;\\\\ 2\cdot\frac{\pi}{4}-\frac{\cos\pi}{4}+c=-3\pi;\\\\\frac{\pi}{2}+\frac{1}{4}+c=-3\pi \\\\ C=-3\pi-\frac{\pi}{2}-\frac{1}{4}\\\\C=-\frac{7\pi}{2}-\frac{1}{4}

Заданная первообразная - F(x)=2x-\frac{\cos4x}{4}-\frac{7\pi}{2}-\frac{1}{4}

F(\frac{7\pi}{4})=2\cdot\frac{7\pi}{4}-\frac{\cos7\pi}{4}-\frac{7\pi}{2}-\frac{1}{4}=\frac{7\pi}{2}+\frac{1}{4}-\frac{7\pi}{2}-\frac{1}{4}=0.

ОТВЕТ: 0.

2. f(x)=e^x+2x+1, \max_{[0;2]}F(x)=e^2.\\\\F(x)=e^x+x^2+x+C.

График данной первообразная вне зависимости от значения константы на заданном отрезке монотонно возрастает. Поэтому максимальное значение первообразная принимает на правом конце отрезка [0; 2] - т.е. при х = 2.

F(2)=e^2+2^2+2+C=e^2+6+C=e^2;\\\\e^2+6+C=e^2\\\\6+C=0\Rightarrow C=-6.

Заданная первообразная - F(x)=e^x+x^2+x-6.

Соответственно все из того же факта монотонного возрастания следует и то, что минимальное значение первообразная принимает на левом конце отрезка [0; 2] - т.е. при х = 0.

F(0)=e^0+0^2+0-6=1-6=-5.

ОТВЕТ: -5.

3. f(x)=-\frac{6}{x^2}=-6x^{-2}, x\in(-\infty; 0) \\\\F(x)=-6\cdot\frac{x^{-2+1}}{-2+1}+C=-6\cdot\frac{x^{-1}}{-1}+C=\frac{6}{x}+C.

По условию F(-2)=-3;

\frac{6}{-2}+C=-3;\\\\ -3+C=-3\Rightarrow C=0.

Заданная первообразная - F(x)=\frac{6}{x}.

Решим уравнение F(x)=f(x):

\frac{6}{x}=-\frac{6}{x^2}, x\neq 0 \\\\ 6\cdot x^2=x\cdot-6;\\\\6x^2+6x=0;\\\\6x(x+1)=0\Rightarrow x_1=0, x_2=-1.

Однако вспоминаем про ограничение для самой переменной: x\neq 0 (о чем прописано также и в условии существования первообразной). Делаем вывод: уравнение имеет единственное решение x=-1

ОТВЕТ: {-1}.

4,5(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ