Объяснение:
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²
Заданная первообразная -
ОТВЕТ: 0.
График данной первообразная вне зависимости от значения константы на заданном отрезке монотонно возрастает. Поэтому максимальное значение первообразная принимает на правом конце отрезка [0; 2] - т.е. при х = 2.
Заданная первообразная -
Соответственно все из того же факта монотонного возрастания следует и то, что минимальное значение первообразная принимает на левом конце отрезка [0; 2] - т.е. при х = 0.
ОТВЕТ: -5.
По условию
Заданная первообразная -
Решим уравнение
Однако вспоминаем про ограничение для самой переменной: (о чем прописано также и в условии существования первообразной). Делаем вывод: уравнение имеет единственное решение
ОТВЕТ: {-1}.
ответ: ну вроде бы так, ну лучше проверить