Объяснение:
1) log₂(x-1)=1
используем определение логарифма -
логарифмом числа b по основанию a ( logₐb ) называется такое число n, что b=aⁿ, у нас а =2, b = (x-1), n = 1 подставим наши значения
(х-1)=2¹ ⇒ х-1=2⇒х=3 отрезок (0;3]
2) log₂(x-1)≤0
по определению логарифма b >0, у нас х-1 > 0 ⇒ х > 1 это первое условие
ищем второе. сначала решаем уравнение log₂(x-1)=0
используем свойство логарифма logₐ1=0 имеем х-1 = 1 ⇒ х=2
на отрезке (1;2] проверим знак логарифма
это наш отрезок (1;2]
3)
x=3; y=-1
4)
log₂(4-x)≤1
4-x>1 ⇒ x < 4
log₂(4-x)=1 ⇒ 2=4-x ⇒x=2
[2;4)
5)
log₇log₂log₇49
раскручиваем справа
log₇log₂log₇49=log₇log₂2=log₇1=0
log₁₂3+log₁₂4= log₁₂3*4=log₁₂12=1
y=f(x0)+f'(x0)*(x-x0)
f(x0)=6sin(pi/3)-cos(pi/3)=6*sqrt(3)/2-1/2=3sqrt(3)-0,5
f'(x)=6cosx-(-sinx)=6cosx+sinx
f'(x0)=6cos(pi/3)+sin(pi/3)=3+sqrt(3)/2 - угловой коэффициент касательной
ответ: k=((sqrt(3)+6)/2)