Левая часть представляет собой сумму неотрицательных слагаемых, эта сумма обращается в ноль тогда и только тогда, когда оба слагаемых суть нули, если хоть одно из них отлично от нуля, то вся сумма (левая часть) отлична от нуля (больше нуля). Таким образом данное уравнение равносильно системе: { (x^2-1)^2 = 0; { (x^2 - 6x -7)^2 = 0; что равносильно { x^2-1 = 0; { x^2 - 6x - 7 = 0; равносильно { x^2=1; {x^2 - 6x - 7 = 0; первое уравнение дает x1=1; или x2=-1; x1 = 1, подставляем во второе уравнение последней системы: 1 - 6 - 7 = 0; <=> -12=0, ложное равенство, поэтому x1=1, не является решением системы. x2 = -1; подставляем во второе уравнение: (-1)^2 - 6*(-1) - 7 = 1+6-7=0, верное равенство, таким образом x=-1 единственное решение системы. ответ. x=(-1).
58/100 = 29/50; 42/100 = 21/50. Чтобы получились точные значения 58% и 42%, должно быть минимум 50 чел, тогда 29 чел = 58%, 21 чел = 42%. а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел. Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%. Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%. 42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%. ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия: 1) n*0,58 = k,p ~ k (целое) 2) k/n ~ 0,58 (при округлении до сотых) Те же 2 условия должны соблюдаться для 0,42. Опытным путем мне удалось найти минимальное количество - 12. 12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58% 12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%
Данный ответ под номером 4.
ответ: 4)(n+t)(m+2)