Объяснение:
Случайные величины
Вариант 1
1. Случайная величина Х принимала значения: 2, 1, 2, 3, 4, 3, 3, 2, 3, 4. Составьте таблицу распределения значений случайной величины Х по частотам (М) и относительным частотам (W). Постройте полигон частот значений величины Х.
2. Найдите моду, медиану, среднее и размах выборки значений случайной величины Y: 7, 4, 6, 5, 6, 7, 5, 6.
Вариант 2
1. Случайная величина Х принимала значения: 1, 0, 4, 3, 1, 5, 3, 2, 4, 3. Составьте таблицу распределения значений случайной величины Х по частотам (М) и относительным частотам (W). Постройте полигон относительных частот значений величины Х.
2. Найдите моду, медиану, среднее и размах выборки значений случайной величины Y: 3, 5, 6, 4, 4, 5, 2, 4, 3.
Видимо, по условию a + b + c = 1.
Умножим обе части исходного равенства на b:
ab + b² + bc = b. Тогда ab = b - b² - bc и bc = b - b² - ab.
Умножим обе части исходного равенства на c:
ac + bc + c² = c. Тогда ac = c - c² - bc. Рассмотрим чему
тогда равны суммы a + bc, b + ac и c + ab:
a + bc = a + b - b² - ab = (a + b) - b(a + b) = (a + b)(1 - b) =
= (a + b)(a + b + c - b) = (a + b)(a + c).
b + ac = b + c - c² - bc = (b + c) - c(b + c) = (b + c)(1 - c) =
= (b + c)(a + b + c - c) = (b + c)(a + b).
c + ab = c + b - b² - bc = (b + c) - b(b + c) = (b + c)(1 - b) =
= (b + c)(a + b + c - b) = (b + c)(a +c).
Перемножим эти три суммы:
(a + bc)(b + ac)(c + ab) = (a + b)(a + c)(b + c)(a + b)(b + c)(a + c) =
= (a + b)²(a + c)²(b + c)² = ((a + b)(a + c)(b + c))². Это выражение
есть полный квадрат.