Если все двугранные углы при основании пирамиды равны, то проекции боковых рёбер совпадают с биссектрисами углов треугольника в основании пирамиды. Вершина пирамиды проецируется в центр вписанной в основание окружности. Радиус r вписанной окружности равен: r = H/tgβ. Сторона АВ = r+(r/tg(α/2)) = r(1+tg(α/2))/tg(α/2) = H(1+tg(α/2))/(tg(α/2)*tgβ). Сторона ВС = АВ*tgα = Htgα(1+tg(α/2))/(tg(α/2)*tgβ). Площадь основания равна: So = (1/2)AB*BC = (1/2)(H²tgα(1+tg(α/2)²/((tg²(α/2)*tg²β)). ответ: V = (1/3)So*H = (1/6)(H³tgα(1+tg(α/2)²/((tg²(α/2)*tg²β)).
-5z=-9
z=-9/(-5)
z=9/5=1 4/5
2.x+10x+25=0
11x=-25
x=-25/11=-2 3/11