Объяснение:
(0;5), (10;2), (3;-6), (-4;-5), (2;9)
В каждой паре на первом месте стоит значение х ,а на втором - у.
При х=0,у=5 2x-4y=12 2*0-4*5≠12 Значит пара (0;5) не является решением уравнения.
При х=10,у=2 2*10-4*2=12 Значит пара (10;2) является решением уравнения.
При х=3,у= -6 2*3-4*(-6)≠12 Значит пара (3;-6) не является решением уравнения.
При х= -4,у= -5 2*(-4)-4*(-5)=12 Значит пара (-4;-5) является решением уравнения.
При х=2,у=9 2*2-4*9≠12 Значит пара (2;9) не является решением уравнения.
Решение системы уравнений х=2
у=2
Объяснение:
Решите систему уравнений
3x - 7y = - 8
2x + 5y = 14
Применим метод алгебраического сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, коэффициенты или при х, или при у были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают одно из уравнений, как бы подгоняют ко второму, можно умножать обе части уравнения на одно и то же число, делить.
Здесь нужно первое уравнение умножить на 2, второе на -3:
6х-14у= -16
-6х-15у= -42
Складываем уравнения:
6х-6х-14у-15у= -16-42
-29у= -58
у=2
Теперь подставляем вычисленное значение у в любое из двух уравнений системы и вычисляем х:
3x - 7y = - 8 3х-7*2= -8 3х= -8+14 3х=6 х=2
2x + 5y = 14 2х+5*2=14 2х=14-10 2х=4 х=2
Решение системы уравнений х=2
у=2
2х+6-1+х=0
3х+5=0
3х=-5
х=-5/3
ответ:(-5/3;+ бесконечности)
б) х^2-4х+3.
можно решать через дискриминант, можно через теорему Виетта:
х1+х2=4
х1*х2=3
тогда х1=3,х2=1
Чертим ось, и чертим закрашенные точки 1 и 3. тогда методом интервалов, положительные значения будут в (-бесконечности; 1] [3;+бесконечности)
2 задание.
а) возведу в квардат
х+х^2-2=0
по теореме виетта:
х1+х2=-1
х1*х2=-2
тогда ответ
х1=-2
х2=1
б) возведу снова в квадрат
2х+8-х^2=0 умножим на -1 и тогда х^2-2х-8=0
по теореме виетта;
х1+х2=2
х1*х2=-8
тогда ответ
х1=4
х2=-2
3 задание.
т. к. условие корень, значит область опредения будет вычисляться так.
2-5х>=0
-5х=-2
х=0,4
чертим числовую прямую и ставим закрашенную точку 0,4.
тогда методом интервалов
ответ (-бесконечности; 0.4]