По определению модуля: |x+1|=x+1, при х+1≥0, т.е при x≥ - 1. Поэтому строим график g(x)=x²-3(x+1)+x на [-1;+∞), упрощаем: g(x)=x²-2x-3 на [-1;+∞). Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки (0;-3) (1;-4)(2;-3)(3;0) (4;5)... Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график g(x)=x²-3(-x-1)+x на (-∞;-1), упрощаем: g(x)=x²+4x+3 на (-∞;-1). Строим часть параболы, ветви вверх, Вершина в точке (-2;-1) Парабола проходит через точки (-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)
Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1