М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zharkovaaa1133
zharkovaaa1133
27.09.2022 06:12 •  Алгебра

Постройте график функций у=(х+2,25)(х-1)/(1-х) и определите при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку. пож

👇
Ответ:
Зайка20005
Зайка20005
27.09.2022
Примерно так
Ребята
ыфафауцацу

Постройте график функций у=(х+2,25)(х-1)/(1-х) и определите при каких значениях k прямая y=kx имеет
4,7(39 оценок)
Открыть все ответы
Ответ:
morshchininao
morshchininao
27.09.2022

Пусть y = uv, тогда y' = u'v + uv':

Решим левый интеграл:

cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdx%7D%7Bcosx%7D%3B%5C%5C%20tg%5Cfrac%7Bx%7D%7B2%7D%3Dt%20%3D%3E%20cosx%20%3D%20%5Cfrac%7B1-t%5E2%7D%7B1%2Bt%5E2%7D%20%3D%3E%20dx%20%3D%20%5Cfrac%7B2%7D%7B1%2Bt%5E2%7Ddt%5C%5C%20%20%5Cint%20%5Cfrac%7B2%281%2Bt%5E2%29%7D%7B%281%2Bt%5E2%29%281-t%5E2%29%7D%20dt%20%3D%20%5Cint%20%5Cfrac%7B2%7D%7B%281-t%29%281%2Bt%29%7Ddt%20%3D%20%5Cint%20%28%20%5Cfrac%7B1%7D%7B1-t%7D%20%2B%20%5Cfrac%7B1%7D%7B1%2Bt%7D%29dt%20%3D%20ln%281-t%29%2Bln%28%201%2Bt%29%20%3D%20ln%7C1-t%5E2%7C%20%3D%20ln%7C1-tg%5E2%5Cfrac%7Bx%7D%7B2%7D%7C%20%20%5C%5C" title="\int \frac{dx}{cosx};\\ tg\frac{x}{2}=t => cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\">

Возвращаемся к исходному:

4,5(56 оценок)
Ответ:
Typre35
Typre35
27.09.2022
\left \{ {{x^2+y^2=9} \atop {x^2+y^2=9y\cdot \sin t+3x\cdot \cos t-18\sin^2t}} \right.
Не трудно заметить что это окружности.
Записав второе уравнение данной системы в виде  (x-1.5\cos t)^2+(y-4.5\sin t)^2=1.5^2, видим, что решениями системы есть координаты точек пересечений кругов с центрами O_1(0;0) и O_2(1.5\cos t;4.5\sin t) и радиусами R_1=3 и R_2=1.5 согласно. Эти круги имеют единую общую точку в таких случаях
          O_1O_2=R_1+R_2 (внешний ощупь)
          O_1O_2=R_1-R_2 (внутренний ощупь)
Поэтому для этого, чтобы найти нужные значения параметра t, достаточно решить совокупность уравнений
 \left[\begin{array}{ccc}2.25\cos ^2t+20.25\sin^2t=20.25\\2.25\cos^2t+20.25\sin^2t=2.25\end{array}\right
Решив совокупность имеем параметр t= \frac{ \pi n}{2} , n \in Z. Остается при этих значениях параметра t  решить систему уравнений.

При t=2 \pi k, k \in Z: решение системы будет (3;0)
При t= \frac{ \pi }{2} +2 \pi k, k \in Z решение системы: (0;3)
При t=- \frac{ \pi }{2} +2 \pi k, k \in Z решение системы (0;-3)
При t= \pi +2 \pi k, k \in Z, решение системы (-3;0)
4,4(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ