Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
Решение: Расстояние от пункта А до пункта В составляет S (км) Автомобили двигаясь навстречу друг другу, встретились через t (часов), причём каждый из них проехал расстояние: -первый автомобиль S1 (км) -второй автомобиль S2 (км) Следовательно расстояние от пункта А до пункта В составляет: S=S1+S2 Значит первому автомобилю чтобы доехать до пункта В, осталось преодолеть расстояние S2 Каждый из автомобилей проехал расстояние S1 и S2 за t (часов), -первый автомобиль за время t со скоростью 80км/час проехал расстояние: S1=80*t --второй автомобиль за время t со скоростью 70км/час проехал расстояние: S2=70*t Из условия задачи следует,что через час после встречи ( а первый автомобиль двигаясь со скоростью 80км/час, проехал за 1 час расстояние 80км), осталось проехать ещё 60км, значит: S2=80км+60км=140км, получилось, что S=S1+S2=(80t+140) км t можно найти: S2/V=140/70=2 (часа) Подставим значение t=2 в формулу: S=80t+140 S=80*2+140=160+140=300 (км)
ответ: Расстояние от пункта А до пункта В составляет 300км
31х^2+62х-62=0
31(х^2+2х-2)=0
ответ: х^2+2х-2=0; p= 2; q= -2