А). y-любое число; б). выражение имеет смысл если знаменатель не равен 0( на 0 делить нельзя). y не равен 0; в). x-7=0, x=7( x не должен равняться 7); д). 3+a=0, a= -3( a не должно равняться (-3)) ; е). 10-b=0, -b= -10, b= (-10)/(-1)=10 (b не должно равняться 10). Подробнее - на -
Пусть скорость по расписанию v км/ч, а время движения по расписанию t часов. Тогда по условию фактическая скорость будет (v+16) км/ч, а фактическое время движения (t - (1/3)) часов (т.к. 20 мин = 1/3 часа). Имеем систему из двух уравнений (исходя из условий задачи). (v+16)*(t-(1/3)) = 160, v*t = 160. Рассмотрим первое уравнение (v+16)*(t - (1/3) = v*t - (v/3) + 16t - (16/3) = 160. Но vt = 160, поэтому имеем 160 - (v/3) + 16t - (16/3) = 160, 16t - (v/3) - (16/3) = 0, 16t = (v/3) + (16/3) = (v+16)/3, t = (v+16)/(16*3). Подставляем это во второе уравнение исходной системы vt = 160, v*(v+16)/(16*3) = 160, v^2 + 16v = 16*3*160, v^2 + 16v - 16*3*160 = 0, решаем это квадратное уравнение. D/4 = 8^2 + 16*3*160 = 64 + 7680 = 7744 = 88^2, v1 = (-8-88) = -96, этот корень не подходит, поскольку он отрицательный. v2 = (-8+88) = 80. ответ. 80 км/ч.
Пусть скорость по расписанию v км/ч, а время движения по расписанию t часов. Тогда по условию фактическая скорость будет (v+16) км/ч, а фактическое время движения (t - (1/3)) часов (т.к. 20 мин = 1/3 часа). Имеем систему из двух уравнений (исходя из условий задачи). (v+16)*(t-(1/3)) = 160, v*t = 160. Рассмотрим первое уравнение (v+16)*(t - (1/3) = v*t - (v/3) + 16t - (16/3) = 160. Но vt = 160, поэтому имеем 160 - (v/3) + 16t - (16/3) = 160, 16t - (v/3) - (16/3) = 0, 16t = (v/3) + (16/3) = (v+16)/3, t = (v+16)/(16*3). Подставляем это во второе уравнение исходной системы vt = 160, v*(v+16)/(16*3) = 160, v^2 + 16v = 16*3*160, v^2 + 16v - 16*3*160 = 0, решаем это квадратное уравнение. D/4 = 8^2 + 16*3*160 = 64 + 7680 = 7744 = 88^2, v1 = (-8-88) = -96, этот корень не подходит, поскольку он отрицательный. v2 = (-8+88) = 80. ответ. 80 км/ч.
Подробнее - на -