Кубическое уравнение - алгебраическое уравнение третьей степени. Общий вид кубического уравнения:
ax3 + bx2 + cx + d = 0, a не равно 0.
Заменяя в этом уравнении x новым неизвестным y, связанным с x равенством x = y - (b / 3a), кубическое уравнение можно привести к более простому (каноническом) виду:
y3 + py + q = 0, где , , решение же этого уравнения можно получить с формулы Кардано.
Формуле Кардано
Для решения кубического уравнения, приведенного к каноническому виду, используется формула Кардано:
Если коэффициенты кубического уравнения - действительные числа, то вопрос о характере его корней зависит от знака выражения, стоящего под квадратным корнем в формуле Кардано. Если > 0, то кубическое уравнение имеет три различных корня: один из них действительный, два других - сопряженные комплексные; если = 0, то все три корня действительные, два из них равны; если < 0, то все три корня действительные и различные.
Выражение только постоянным множителем отличается от дискриминанта кубического уравнения D = -4p3 - 27q2.
Решить уравнение по формуле Кардано можно в автоматическом режиме прямо на этом сайте -
Значит, у них сейчас разница в 12 монет (у Васи на 12 монет больше, чем у Пети). Если же ещё и Петя даст 9 монет, то эта разница увеличится на 9+9 = 18 монет. Итого она будет составлять 12+18 = 30 монет. Получается, что у Васи может в таком случае быть больше на 30 монет.
Если у одного минимальное количество монет (1 монета), то коэффициент K будет наибольший. А если у одного из них 1 монета, а у второго на 30 монет больше, то получается, что у второго — 31 монета. 31/1 = в 31 раз.
y'=3x²-75
y'=0
3x²-75=0
x²=25
x=+-5
-5 не входит в [0;6]
y(0)=5
y(5)=5³-75*5+5=125-375+5=-245
y(6)=6³-75*6+5=216-450+5=-229
ответ наименьшее значение функции y=x³-75x+5  на отрезке [0; 6]
равно (-245) в точке x=5