ответ: 64 и 96 км/час.
Объяснение: формула известна: путь = скорость * время;
до встречи автомобили двигались с разной (видимо) скоростью - обозначим (х) км/час для автомобиля из А->В и (у) км/час для автомобиля из В->А, значит разное расстояние - (х*t) км и (у*t) км, одинаковым было время (в пути до встречи), обозначим (t) часов.
x*t + y*t = 80 (км)
оставшуюся часть пути (это у*t) автомобиль из А->В со скоростью (х) за 45 минут = 3/4 часа: y*t = (3/4)*x
t = 3x / (4y)
оставшуюся часть пути (это x*t) автомобиль из со скоростью (y) за 20 минут = 1/3 часа: x*t = (1/3)*y
t = y / (3x)
получим: 3x / (4y) = y / (3x)
9x^2 = 4y^2 ---> 3x = 2y
y = 1.5x (т.е. скорость одного авто в 1.5 раза больше скорости другого)
(y/3) + (3x/4) = 80
4*1.5х + 9x = 80*12
15x = 5*16*4*3
x = 16*4 = 64 (км/час)
у = 1.5*64 = 3*32 = 96 (км/час)
Проверка:
из А->В автомобиль со скоростью 64 км/час за 80/64 часа = 5/4 часа = 1 час 15 минут
из В->А автомобиль со скоростью 96 км/час за 80/96 часа = 5/6 часа = 50 минут
тогда
из А->В автомобиль до встречи за 1 час 15 минут - 45 минут = 30 минут
из В->А автомобиль до встречи за 50 минут - 20 минут = 30 минут
В решении.
Объяснение:
Решить систему неравенств:
х² - 4х + 3 <= 0
(x + 2)(x + 4)/5x <= 0
Решить первое неравенство.
Приравнять неравенство к нулю и решить как квадратное уравнение:
х² - 4х + 3 = 0
D=b²-4ac =16 - 12 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(4 - 2)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(4 + 2)/2
х₂=6/2
х₂=3.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1 и х= 3, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у <= 0 (график ниже оси Ох) при х∈[1; 3].
Неравенство нестрогое, скобки квадратные.
Решение первого неравенства х∈[1; 3].
Решить второе неравенство.
(x + 2)(x + 4)/5x <= 0
Приравнять неравенство к нулю и решить как квадратное уравнение.
(x + 2)(x + 4)/5x = 0
а) (x + 2)(x + 4) = 0
Можно раскрыть скобки и получить квадратное решение, потом найти через дискриминант х₁ и х₂.
А можно взять готовые значения х₁ и х₂ из уравнения:
х₁ = -2; х₂ = -4;
б) 5х = 0
х₃ = 0
Решение второго неравенства х∈(-∞; -4]∪[-2; 0).
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Чертим числовую ось, отмечаем значения -4, -2, 0, 1, 3.
х∈[1; 3] - штриховка вправо от 1 до 3.
х∈(-∞; -4]∪[-2; 0) - штриховка вправо от - бесконечности до -4 и
от -2 до 0.
Пересечения решений (двойной штриховки) нет.
Следовательно, решений системы неравенств нет.