323 это 17*19 логично что если любое a кратно 17 и a кратно 19 то a кратно 323, потому что 17, 19- просты числа с этим надеюсь понятно и еще вспомним то что если a кратно m и b кратно m, то и a+b кратно m и с этим надеюсь все поняно
найдем при каких n 20^(n)+16^(n)−3^(n)−1 кратно 19 и 17 одновременно разложим 20^(n)+16^(n)−3^(n)−1 двумя сначала сгруппируем так [ 20^(n)-1 ] + [ 16^(n)-3^(n) ] используя Ньютона-Бинома это легко раскладывается так 19[ 20^(n-1)+20^(n-2)++20+1 ] + 13[ 16^(n-1)+16^(n-2)*3+...+16*3^(n-2)+3^(n-1) ] заметим что [ 20^(n)-1 ] кратно 19 при любом n осталось посмотреть при каких n [ 16^(n)-3^(n) ] кратно 19 13[ 16^(n-1)+16^(n-2)*3+...+16*3^(n-2)+3^(n-1) ] ну 13 ничего не решает так что отбросим его 16^(n-1)+16^(n-2)*3+...+16*3^(n-2)+3^(n-1) ну если все сгруппировать по 2 соседние, т.е. 16^(n-1) c 16^(n-2)*3 ну и так далее и там будет 16^(в какой то стпени)(16+3) или начиная с середины когда степень 3 будет больше степени 16 3^(в какой то стпени)(16+3) если n будет четно то все сгруппируется, а если n будет нечетное то в конце останется 3^(n-1) ну и если сделать то же самое но сгруппировать [ 20^(n)−3^(n) ] + [ 16^(n)−1 ] то мы докажем тоже самое но только для 17 ну и получается n=0;2;4;6;8... n₇=12
Найдем производную функции первого порядка:
Геометрический смысл производной. Производная в точке x₀ равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.
Откуда получаем и - точки касания.
Найдем уравнение касательной графика функции y(x) в точке касания x₀=4
- общий вид уравнения касательной.
Найдем значение функции в точке х₀=4:
- уравнение касательной в точке х₀=4
Найдем значение функции в точке х₀=2:
- уравнение касательной в точке х₀=2