Каждой точке (х; у) графика у = f(x) соответствует единственная точка (х; - у) графика у =- f(x) и наоборот. Точки (х; у) и (х; - у) симметричны относительно оси ОХ. Значит, графики у =f(x) и y = -f(x) симметричны относительно оси ОХ.
Пример 1
Построить график функции у = - .
Решение
Строим график функции у = , а затем строим симметрично относительно оси ОХ.
Симметрия относительно оси ОУ (оси ординат)
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (-х; у) графика у = f(-x), и наоборот. Но точки (х; у) и (-х; у) симметричны относительно оси ОУ, значит, графики у = f(x) и у = f(-x) симметричны относительно оси ОУ.
Пример 2
Построить график функции у = .
Решение
Строим график функции у =, а затем строим симметрично относительно оси ОУ.
Пример 3
Построить график функции у = -
Решение
Выполним ряд последовательных преобразований:
строим график функции у = ;
строим симметрично относительно оси ОУ, т. е. получаем график функции у = ;
строим симметрично относительно оси ОХ, т.е. получаем искомый график функции у = -.
Параллельный перенос (сдвиг) вдоль оси абсцисс
Пусть дан график функции у = f(x).
Чтобы построить график функции у = f(x+a), где а – некоторое данное число, достаточно график функции у= f(x) перенести параллельно направлении оси ОХ на расстояние в положительном направлении, если а<0, и в отрицательном направлении, если а>0.
Пример 4.
Построить графики функций у =(х - 3)² и у =(х + 1)².
Решение
Строим график функции у = х² (пунктиром). Переносим его дважды: в положительном направлении оси ОХ на расстояние, равное 3, и получаем график у = (х – 3)²; в отрицательном направлении оси ОХ на расстояние, равное 1, и получаем график у = (х + 1)².
Параллельный перенос (сдвиг) вдоль оси ординат
Пусть дан график функции у =f(x).
Чтобы построить график функции у = f(x) + a, где а – некоторое данное число, достаточно график функции у = f(x) перенести параллельно оси ОУ на расстояние в положительном направлении, если а >0, и в отрицательном, если а /I>0.
Пример 5.
Построить график функции у = 5+.
Решение
Строим график у = (пунктиром). Переносим его в положительном направлении оси ОХ на расстояние, равное 4, и получаем график у =, а затем переносим в положительном направлении оси ОУ на расстояние, равное 5, получаем искомый график у = 5 +.
По условию число делится на 5, значит, оно заканчивается на 5 или на 0.
Но число переписанное в обратном порядке четырехзначное число, то это означает, что первоначальное число заканчивается только на 5.
(1000х+100у+10с+5) - исходное число,
где
1≤x≤9;
0≤y≤9;
0≤с≤9.
(5000+100с+10у+х) - новое число
По условию:
(1000х+100у+10с+5) - (5000+100с+10у+х) = 1629
1)
1000х+100у+10с+5 - 5000-100с-10у-х = 1629
1000х+100у+10с - 5000-100с-10у-х = 1629-5
1000х+100у+10с - 5000-100с-10у-х = 1624
Найдём из этого х.
0-x=4 => x =-4 - не подходит
другой вариант: 10-x=4 => x=6
2)
Подставим х=6
1000*6+100у+10с - 5000-100с-10у-6 = 1624
6000+100у+10с - 5000-100с-10у = 1624+6
1000+100у+10с -100с-10у = 1630
90у-90с=630
Обе части разделим на 90.
у-с=7
с=у-7 (ОДЗ: у-7>=0; y>=7)
1) при у=9; с=9-7 => с=2
Получим число 6925.
2) при у=8; с=8-7 => с=1
Получим число 6815
3) при у=7; с=7-7 => с=0
Получим число 6705
Итак мы получили три числа, удовлетворяющих решению:
6925; 6815; 6705
Проверка.
6925 – 5296 = 1629;
6815 – 5186 = 1629;
6705 – 5076 = 1629
ответ: 6925; 6815; 6705