М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
michael48
michael48
15.12.2021 01:39 •  Алгебра

Решите систему: пара чисел (х; у) является решением системы 2х+у-8=0 3х+4у-7=0 чему равно произведение х*у ?

👇
Ответ:
Poniy11
Poniy11
15.12.2021
{ 2x + y  - 8  = 0      ⇒   y = -2x + 8
{ 3x  + 4y  - 7  = 0
подстановки:
3х  + 4(-2х + 8)   -  7  = 0
3х  - 8х  + 32  - 7  = 0
- 5х  + 25 = 0
-5х = - 25         | *(-1)
5x =  25
x = 25 : 5
х = 5
у = - 2*5  + 8 = -10 +8
у = - 2   
х * у  =  5 *(-2) = -  10
Решите систему: пара чисел (х; у) является решением системы 2х+у-8=0 3х+4у-7=0 чему равно произведен
4,5(64 оценок)
Ответ:
katherinepierce1864
katherinepierce1864
15.12.2021
Всмотри все в файле.Думаю все понятно
4,5(60 оценок)
Открыть все ответы
Ответ:
DahenkaSi05
DahenkaSi05
15.12.2021
Bn=b1*q^(n-1)
1)Даны последовательные члены геометрической последовательности 12,с,27.Найдите с?
b3/b1=27/12=9/4=q^2
q=3/2
c=b2=12*3/2=18
q=-3/2
c=b2=12*(-3/2)=-18

2) Последовательность bn-геометрическая прогрессия. Найдите b7, если b4=20,q=0.3
b4=b1*0.3^3=20
b1*0/027=20
b1=20/0.03^3
b7=b1*q^6=20/0.3^3*0.3^6=20*0.3^3=0.54
3)Найдите номер члена геометрической прогрессии bn=972, b1=4 q=3
bn=b1*q^(n-1)
972=4*3^(n-1)
3^(n-1)=972/4=243=3^5
n-1=5
n=6
4) Найдите первый член и знаменатель геометрической прогрессии bn, если bn=5/3в степени n
b2/b1=q
(5/3)^2 : (5/3)=q
q=5/3
b1=b1*q^(0)
b1=(5/3)^1*1=5/3
b1=q=5/3
5)Найдите знаменатель геометрической прогрессии q, если b1+b4=54, b7+b4=2
Решение надо
b1+b4=54
b7+b4=2
b1+b1q^3=54
b1q^6+b1q^3=2
b1(1+q^3)=54
b1q^3(1+q^3)=2 делим это на предыдущее
q^3=2/54=1/27=1/3^3
q=1/3
1)даны последовательные члены последовательности 12,с,27.найдите с? 2) последовательность bn- прогре
4,8(48 оценок)
Ответ:
маришка213
маришка213
15.12.2021
Рассмотрим функцию f(t) = (t - 1)/(t^2 + 5). Она определена и непрерывна вместе со всеми производными на всей действительной оси.
f'(t) = ((t^2 + 5) - 2t(t - 1))/(t^2 + 5)^2 = (6 - (t - 1)^2)/(t^2 + 5)^2
f'(t) >= 0 при 1 - sqrt(6) <= t <= 1 + sqrt(6) - на этом отрезке она возрастает, вне него - убывает.
Тогда xn возрастает при n < 1 + sqrt(6), убывает при n > 1 + sqrt(6). Так как 3 < 1 + sqrt(6) < 4, то на роль максимального претендуют x3 и x4.

x3 = (3 - 1)/(3^2 + 5) = 2/14 = 1/7
x4 = (4 - 1)/(4^2 + 5) = 3/21 = 1/7

x3 = x4, значит, членов с максимальными значениями 2: n = 3 и n = 4. В ответ пойдёт 3 + 4 = 7.
4,5(68 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ