1)
3 * 4⁻² + 2³ =
= 3/4² + 8 =
= 3/16 + 8 = 8 3/16,
2)
0,4⁰ - (0,25)³ =
= 1 - (1/4)³ =
= 1 - 1/64 =
= 64/64 - 1/64 = 63/64
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
1) 3*4^-2+2^3=0.1875+8=8.2
2) 0.4^0-(-0.25)^2=1+0.0625=1.06
Вроде так...