ответ: 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}
Объяснение:
Рассмотрим уравнение 1 :
(|y-10|+|x+3|-2)*(x^2+y^2-6)=0
Уравнение представляет собой совокупность квадрата с центром в точке: B(-3;10) с половиной диагонали равной 2 и окружность с центром в начале координат и радиусом √6.
Рассмотрим уравнение 2
(x+3)^2+(y-5)^2=a -окружность с центром в точке : A (-3 ;5) и радиусом равным √a (находится на одной вертикали с квадратом из уравнения 1)
На рисунке показаны случаи касания окружности из уравнения к окружности и к квадрату из уравнения 1.
3 решения будет либо когда окружность из уравнения 2 касается квадрата (в 1 точке ) и пересекает окружность уравнения 1 ( в двух точках соответственно) , либо когда касается окружности уравнения и пересекает квадрат ( в двух точках соответственно).
Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов: Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
ответ: 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}
Объяснение:
Рассмотрим уравнение 1 :
(|y-10|+|x+3|-2)*(x^2+y^2-6)=0
Уравнение представляет собой совокупность квадрата с центром в точке: B(-3;10) с половиной диагонали равной 2 и окружность с центром в начале координат и радиусом √6.
Рассмотрим уравнение 2
(x+3)^2+(y-5)^2=a -окружность с центром в точке : A (-3 ;5) и радиусом равным √a (находится на одной вертикали с квадратом из уравнения 1)
На рисунке показаны случаи касания окружности из уравнения к окружности и к квадрату из уравнения 1.
3 решения будет либо когда окружность из уравнения 2 касается квадрата (в 1 точке ) и пересекает окружность уравнения 1 ( в двух точках соответственно) , либо когда касается окружности уравнения и пересекает квадрат ( в двух точках соответственно).
Все обозначения смотрите на рисунке.
Найдем расстояния между центрами:
AB=10-5=5
AO=√(5^2+3^2)=√34
a1=5-2=3 → a=3^2=9
a2=5+2=7 → a=7^2=49
a3=√34-√6=√2* (√17-√3) → a= (√2* (√17-√3) )^2=40-4√51=4*(10-√51)
a4=√34+√6=√2*(√17+√3) → a= (√2*(√17+√3) )^2=4*(10+√51)
Cравним: a1 и a3
3 и √2* (√17-√3)
9 и 40-4*√51
4√51 и 31
816 < 961
Так же очевидно ,что :
a4=√34+√6 >√25+√4 =7=a2
a3=√34-√6<√49=7=a2
a4>a2>a3>a1
Тогда из рисунка видно, что 3 решения получается когда :
a=a3^2=4*(10-√51)
a= a2^2=49
a∈{49} ∪ {4*(10-√51)}
Теперь рассмотрим отдельно то , когда a=0
В этом случае уравнение 2 имеет вид :
(x+3)^2 +(y-5)^2=0
Поскольку квадрат число неотрицательное , то
x=-3 ; y=5
Но эта точка не принадлежит области первого уравнения.
ответ : 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}