Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
Пусть собственная скорость лодки(v) равна х, тогда по течению реки скорость лодки будет х+4 (т.е. лодка имеет свою скорость х и к ней еще суммируется скорость течения), а против течения х-4 (так как поток воды препятствует плыть быстрее, мы вычитаем скорость реки из собственной скорости лодки).
Составим таблицу: v(скорость)t(время)s(расстояние) По теч.х+433*(х+4)-по формуле s=t*v Против.х-477*(х-4)
Всего пройдено (s)=124, отсюда
3*(х+4)+7*(х-4)=124 3х+12+7х-28=124 10х-16=124 10х=140 х=14 Итак, собственная скорость лодки=14 км/ч