15км/ч
Объяснение:
(t-1) - время, затраченное по течению;
t - время, затраченное против течения;
(v+1) - скорость катера по течению;
(v-1) - скорость катера против течения.
Составляет систему уравнений:
(t-1)(v+1)=112
t(v-1)=112
(t-1)(v+1)-t(v-1)=112-112
tv+t-v-1-tv+t=0
tv-tv+t+t-v-1=0
2t-v-1=0
2t-v=1
v=2t-1
t(2t-1-1)=112
2t^2 -2t=112
2(t^2 -t)=112
t^2 -t=112/2
t^2 -t=56
t^2 -t-56=0
D=1^2 -4×1×(-56)=1+224=225
t1=(-(-1)+√225)/(2×1)=(1+15)/2=16/2=8ч
t2=(1-15)/2= -14/2= -7
Отсюда следует, что время, затраченное против течения, составляет 8 часов.
8(v-1)=112
v-1=112/8
v=14+1=15км/ч - скорость катера.
Объяснение:
ОДЗ : cos2x ; sin2x
cosx ± 1/4 ; sinx ; cosx 0
x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z
2*2cos^2 x - 2 = 1/2cos2x * ( ... )
2cos2x = 1/2cos2x * ( ... )
можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем
2 = 1/2 * ( ... )
для удобства делаем замену: пусть 2x = t
2 = 1/2 * (/cost + 1/sint)
2 = /2cost + 1/2sint
(sint + cost) / 2costsint = 2
-2 (-/2 sint - 1/2 cost) / 2costsint = 2
-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2
выносим минус за скобки и сокращаем 2
а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво
cos (π/3 - t) / costsint = 2
cos (π/3 - t) = 2costsint
cos (π/3 - t) - sin2t = 0
sin (π/2 - (π/3 - t) - sin2t = 0
sin (π/6 + t) - sin2t = 0
используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)
и делим на 2
cos ((π + 18t)/12) * sin((π - 6t)/12) = 0
cos ((π + 18t)/12) = 0
sin ((π - 6t)/12) = 0
t = 5π/18 + 2πk/3
t = π/6 + 2πk
вспоминаем, что t = 2x
x = 5π/36 + πk/3
x = π/12 + πk
k ∈ Z
Скажи как их выложить несколько