М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
matv
matv
02.03.2022 06:19 •  Алгебра

Решети уравнение -4(2x-+2x)=-10x+8 заранее )

👇
Ответ:
9uh9ev2
9uh9ev2
02.03.2022
1) Раскрываем скобки:
-8x+12-4-2x=-10x+8
2) Приводим подобные слагаемые:
-10x+8=-10x+8
ответ: бесконечное множество решений.
4,8(39 оценок)
Открыть все ответы
Ответ:

2. График  y = 2x² - 6x + 4 = 2(x -1,5)²- 0,5   изображен  неправильно

вершина параболы в точке (1, 5 ; -0,5) ,  ось абсцисс  пересекает в двух точках  ( 1 ; 0)  и (2 ; 0)   || 1  и 2  корни   трехчлена 2x² - 6x + 4 || ,а ось ординат  в точке (0; 4)  пересекает в двух точках

3.   Все целые числа  кроме    { -1 ; 0 ; 1 ; 2 ; 3 }

другое  Найдите целые решения неравенства  x² - 2x -6 ≤ 0

ответ : { -1 ; 0 ; 1 ; 2 ; 3 }

5.  Решите неравенство  :  (x² -5x +6) / ( x²  -7x)  ≤  0

- - - - - - -

(x² -5x +6) / ( x²  -7x)  ≤  0 ⇔(x-2)(x-3) / x(x-7) ≤ 0 ⇔

{  x ( x - 2)(x - 3) ( x-7 )  ≤ 0 ;  x( x - 7 ) ≠ 0 .

решается методом интервалов

+ + + + + 0 - - - - - [2] + + + + + [3] - - - - - -(7 ) + + + + + + +

ответ :   x ∈ (0 ; 2] ∪ [3 ; 7) .


задания по алгебре :)))
4,7(13 оценок)
Ответ:
danilnikitin624
danilnikitin624
02.03.2022
Дана функция у = (-1/3)x^3+x^2.
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
 f(-x) = (-1/3)x³ + x²  = (1/3)x³ + x² 
- Нет
 -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² 
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(-1/3)x³+ x² = 0.
-x³ + 3x² = 0.
-x²(x-3) = 0.
Имеем 2 корня: х = 0 и х = 3.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в y = (-1/3)x^3 +x^2.
y = (-1/3)0³+0² = 0. Точка: (0, 0) 
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = -x²+2x = -x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.
5-определить промежутки монотонности 
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х =                -0.5    0    0.5      1.5     2     2.5
y'=-x^2+2x   -1.25    0   0.75    0.75    0   -1.25
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Возрастает на промежутке
[0, 2]
Убывает на промежутках
(-oo, 0] U [2, oo)
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 0,
Максимум функции в точке: х = 2.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = (-1/3)*2³+2² = -8/3 + 4  = 4/3,
х = 0, у = 0.
8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)= -2х + 2 =-2(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 1]
Выпуклая на промежутках
[1, oo)

Иследуйте функцию и постройте график: f (x)=-1/3x^3+x^2
4,7(7 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ