По условию b1; b1*q; b1*q^2; b1*q^3 возрастающая геометрическая прогрессия; b1 не равно 0; q не равно 1 и q >0; должно выполняться неравенство: b1*q>b1; b1*q-b1>0; b1*(q-1)>0; возможны две системы неравенств; первая: b1>0 q-1>0 b1>0 q>1 вторая: b1<0 q-1<0 b1<0 q<1 К этим системам вернёмся, Когда получим значение q; По условию b1; b1*q; b1*q^3 арифметическая прогрессия; должно выполняться равенство: b1*q - b1=b1*q^3 - b1*q; b1*(q-1)=b1*q*(q^2-1); q-1=q*(q-1)*(q+1); 1=q*(q+1); (b1 не равно 0; g не равно 1); q^2+q-1=0; D=1^2-4*(-1)=1+4=5; q1=(-1+√5)/2; q2=(-1-√5)/2; q2 не подходит, так как q2<0 (прогрессия возрастающая и q>0); q1 подходит; 0ответ: (-1+√5)/2
6x² + 6/x² + 5x + 5/x - 38 = 0
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
x ≠ 0
замена
1/x + x = t
(1/x + x)² = t²
1/x² + 2*1/x * x + x² = t²
1/x² + 2 + x² = t²
1/x² + x² = t² - 2
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
6(t² - 2) + 5t - 38 = 0
6t² - 12 + 5t - 38 = 0
6t² + 5t - 50 = 0
D = 25 + 4*50*6 = 1225 = 35²
t12 = (-5 +- 35)/12 = 30/12 (5/2) - 40/12 (-10/3)
обратно к х
1. 1/x + x = 5/2
2x² - 5x + 2 = 0
D = 25 - 16 = 9 = 3²
x12 = (5 +- 3)/4 = 2 1/2
2. 1/x + x = -10/3
3x² + 10x + 3 = 0
D = 100 - 36 = 64 = 8²
x12 = (-10 +- 8)/6 = -3 -1/3
ответ x = {2,1/2,-3,-1/3}
вкратце