1. поработаем со знаменателем первой дроби. это формула сокращенного умножения. (х+2)(х-2)- будет являться общим знаменателем.
2. 3 переносим в левую часть, поменяв знак на противоложный, тк переносим через =. подгоним все под общий знаменатель и получим:
4-(х+2)-3(х²-4)\(х-2)(х+2)=0
3. дробь равна 0, когда числитель равен 0, а знаменатель не равен. потому знаменатель отбрасываем. НО. делить на 0 нельзя, поэтому нельзя, чтобы в знаменателе получился 0. х не равно +-2. получим:
4-(х+2)-3(х²-4)=0
4. раскроем скобки. если перед скобкой стоит -, то все знаки меняются на противоположные, а скобки убираются. если перед скобкой стоит умножение, то нужно член, стоящий перед скобкой, умножить на каждый член в скобки и скобки уберутся. получим
4-х-2-3х²+12=0
5. приведем подобные и получим:
-3х²-х+14=0
для удобства умножим все на -1 ( не обязательно):
3х²+х-14=0
6.D= в²-4ас
D= 1+168=169=13²
х1=-1+13\6=2
х2= -1-13\6= -7\3
ответ: -7\3, 2
Обозначим красные воздушные шары - "К", зелёные - "З", синие - "С".
Пусть в коробке лежит х "К". ⇒ "З"=х/8 , а "С"≥1.
x+\frac{x}{8}+C=19.\ \ \ \ \ \ \ \ (1)x+
8
x
+C=19. (1)
Количество воздушных шаров - целое число. ⇒
\frac{x}{8}
8
x
- должно быть целым числом. Исходя из условия задачи х может равняться 8 и 16.
Подставляем х=8 в уравнение (1).
\begin{gathered}8+\frac{8}{8}+C=19\\8+1+C= 19\\9+C=19\\C=10.\end{gathered}
8+
8
8
+C=19
8+1+C=19
9+C=19
C=10.
Но по условию задачи "К">"C"≥1 ⇒ х≠8.
Подставляем х=16 в уравнение (1).
\begin{gathered}16+\frac{16}{8} +C=19\\16+2+C=19\\18+C=19\\C=1.\end{gathered}
16+
8
16
+C=19
16+2+C=19
18+C=19
C=1.
По условию задачи "К">"C"≥1 ⇒ x=16.
ответ: в коробке 16 красных воздушных шаров.