и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)
Объяснение найти правильный ответ
A2. Найдите значение выражения 2 – tg2x · cos2 x,если sin х = 0,2
1) 1,2 2) 1,96 3) 1,04 4) 1,6
А3. У выражение sin2α ·cos4α - sin6α + sin4α · cos2α
1) sin2α - sin6α 2) -2sin6α 3) 0 4)cos2α – sin6α
А4. Найдите значение выражения √2 · sin22,5 ۫ · cos22,5 ۫
1) 1 2) √2 3) √2/2 4) 0,5
А5. У выражение sin(α – β) + 2 cosα · sinβ
1) cos(α + β) 2) cos(α – β) 3) sin(α + β) 4) sin(α – β)
Это выражения под номерами 1, 3, 4.