Координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Объяснение:
Решить графически систему уравнений:
у=3х
4х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем второе уравнение в уравнение функции:
4х-у=3
-у=3-4х/-1
у=4х-3
Таблицы:
у=3х у=4х-3
х -1 0 1 х -1 0 1
у -3 0 3 у -7 -3 1
Согласно графика, координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Объяснение:
Решить графически систему уравнений:
у=3х
4х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем второе уравнение в уравнение функции:
4х-у=3
-у=3-4х/-1
у=4х-3
Таблицы:
у=3х у=4х-3
х -1 0 1 х -1 0 1
у -3 0 3 у -7 -3 1
Согласно графика, координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
4 / 2 2 /atan2(-im(m), -re(m))\ 4 / 2 2 /atan2(-im(m), -re(m))\
\/ 3 *\/ im (m) + re (m) *cos|| i*\/ 3 *\/ im (m) + re (m) *sin||
\ 2 / \ 2 /
n1 = - -
3 3
4 / 2 2 /atan2(-im(m), -re(m))\ 4 / 2 2 /atan2(-im(m), -re(m))\
\/ 3 *\/ im (m) + re (m) *cos|| i*\/ 3 *\/ im (m) + re (m) *sin||
\ 2 / \ 2 /
n2 = +
3 3
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| - + || / / \ / \ |atan2| - + ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n3 = - 4 / | - | + | + | *cos|| - i*4 / | - | + | + | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| - + || / / \ / \ |atan2| - + ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n4 = 4 / | - | + | + | *cos|| + i*4 / | - | + | + | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| + - || / / \ / \ |atan2| + - ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n5 = - 4 / | + | + | - | *cos|| - i*4 / | + | + | - | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| + - || / / \ / \ |atan2| + - ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n6 = 4 / | + | + | - | *cos|| + i*4 / | + | + | - | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /