Если площадь s(x) фигуры x разделить на площадь s(a) фигуры a , которая целиком содержит фигуру x, то получится вероятность того, что точка, случайно выбранная из фигуры x, окажется в фигуре a. обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 15.00 до 16.00 равно 60 мин. в прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата oabc. друзья встретятся, если между моментами их прихода пройдет не более 13 минут, то есть y-x< 13, y< x+13 (y> x) и x-y< 13 , y> x-13 (y< x).этим неравенствам удовлетворяют точки, лежащие в области х.для построения области х надо построить прямые у=х+13 и у=х-13.затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-13.кроме этого точки должны находиться в квадрате оавс.площадь области х можно найти, вычтя из площади квадрата оавс площадь двух прямоугольных треугольников со сторонами (60-13)=47: s(x)=s(oabc)-2*s(δ)=60²-2*1/2*47*47=3600-2209=1391.
1) путь сначала было х соли и у воды x/(x+y)=0,35 x+y -масса раствора когда добавили соль, стало (x+110)/(x+110+y)=0,6 решаем эту систему x=0,35(x+y) x+110=0,6(x+y+110)
x=0,35x+0,35y 0,65x=0,35y y=0,65x/0,35=13x/7
x+110=0,6(x+13x/7+110) x+110=0,6(20x/7+110) x+110=12x/7+66 12x/7-x=110-66 4x/7=44 x=44*7/4=77 y=77 *13/7=11*13=143 x+y=77+143=220 ответ: первоначальная масса раствора 220г в растворе первоначально было соли 77г
2) в певой бочке было х литров, а во второй у x+y=798 x-15=y-57 решаем эту систему y=798-x x=y-42 x=798-x-42 2x=756 x=378 y=798-378=420
ответ: в первой бочке было первоначально 378л бензина; во второй бочке было первоначально 420л бензина.