Дан эллипс 9х² + 25у² = 225 с центром в начале координат.
Или (х²/25) + (у²/9) = 1.
В нём а = 5, в = 3.
Находим расстояние до фокусов - это величина "с".
с = √(a² - b²) = √(25 - 9) = √16 = 4.
Точки, где фокальные радиусы взаимно перпендикулярны. лежат на окружности радиусом 4 с центром в начале координат.
Тогда координаты искомых точек удовлетворяют решению системы:
9х² + 25у² = 225,
х² + у² = 16. х² = 16 - у² подставим в первое уравнение.
9(16 - у²) = 25у² = 225.
144 - 9у² + 25у² = 225.
16у² = 81. у = +- 9/4.
х = √(16 - (81/16) = +-5√7/4.
То есть на эллипсе есть 4 точки, в которых фокальные радиусы взаимно перпендикулярны.
((9/4); (5√7/4)),
((9/4); (-5√7/4)),
((-9/4); (5√7/4)),
((-9/4); (-5√7/4)).
{х:у=8
{х-у=294
{х=8у
8у-у=294
7у=294
у=42
42-одно число
х=8*42=336 - другое число
х+у=42+336=378 - сумма этих чисел
ответ: 378