Исследовать функцию y=-x^4+8x^2-9 и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.
Квадратное уравнение, решаем относительно n:
Ищем дискриминант:
D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;
Дискриминант больше 0, уравнение имеет 2 корня:
n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;
n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.
Обратная замена: х = √n.
x₁ = √1,354249 = 1,163722, x₂ = -1,163722.
x₃ = √6,645751 = 2,57793, x₄ = -2,577935.
Получаем 4 точки пересечения с осью Ох:
(1,163722; 0), (-1,16372; 0), (2,57793; 0), (-2,57793; 0).
x₃ = √6,645751 = 2,57793,
Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3
y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
8. Искомый график функции в приложении.
Подробнее - на -
Объяснение:
х - производительность первого (т.е. объем работы за 1 час)у - производительность второго
3х - объем работы, которую сделал первый за 3 часа
(3-1)у = 2у - объем работы, которую сделал второй за 2 часа
1 - 0,45 = 0,55 - объем работы, которую сделали первый и второй вместе.
Поучаем первое уравнение:
3х + 2у = 0,55
В условии сказано, что по окончанию работы выяснилось, что каждый выполнил половину всего задания, т.е. 1/2 или 0,5.
0,5 /х - всё время, затраченное первым рабочим на выполнение задания
0,5 /у - всё время, затраченное вторым рабочим на выполнение задания
По условию:
0,5 /х >0,5/y на 1 час
Поучаем второе уравнение:
0,5 /х - 0,5/y = 1
Решаем систему:
{3х + 2у = 0,55
{0,5 /х - 0,5/y = 1
ОДЗ: x>0; y>0
Второе уравнение умножим на 2xy.
{3х + 2у = 0,55
{2xy·0,5 /х - 2xy·0,5/y = 1·2xy
{3х + 2у = 0,55
{y - x = 2xy
Из второго уравнения выразим y.
y-2xy = x
y(1-2x) = x
y = x/(1-2x)
Подставим в первое
3x + 2x/(1-2x) = 0,55
При x≠0,5
3x·(1-2x) +2x = 0,55·(1-2x)
3x-6x²+2x-0,55+1,1x=0
-6x² +6,1x - 0,55 = 0
6x² - 6,1x + 0,55 = 0
D = b²-4ac
D = 37,21 - 4·6·0,55 = 24,01
√D =√24,01 = 4,9
x₁ = (6,1 - 4,9)/12 = 1,2/12=0,1
x₁= 0,1
x₂ = (6,1 + 4,9)/12 = 11/12=11/12
x₂ =11/12
При x₁ = 0,1 находим у₁
y₁ = 0,1/(1-2·0,1) = 0,1/0,8 = 1/8
Получаем х₁ = 0,1 и у₁ = 1/8 = 0,125
При x₂ = 11/12 находим у₂
y₂ = 11/12 : (1-2·11/12) = 11/12 : (-10/12) = 11/12 · (- 12/10) = - 11/10 = - 1,1
у₂ - 1,1 - отрицательное противоречит ОДЗ.
Итак мы нашли
0,1 - производительность первого (т.е. объем работы за 1 час)0,125 - производительность второго.
И, наконец, 1 - объем всей работы делим на производительность каждого и получаем искомое время каждого.
1 : 0,1 = 10 ч - за это время первый,работая отдельно, может выполнить все задание.
1 : 0,125 = 8 ч - за это время второй,работая отдельно, может выполнить все задание.
ответ: 10ч; 8ч