1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Одна треть, Вам верно посчитали. . Вероятность равна 2*С (2,2)*С (2,0)/C(2,4)=2*1*1/6=1/3 - это используя комбинаторику. Но можно посчитать и исходя из классического определения вероятности. Каким можно вынуть два шара одного цвета? Либо кк, либо сс. Вероятность вынуть первый красный 2/4=1/2 (красных два шара из четырех) , вероятность вынуть второй красный 1/3 (один красный из оставшихся трех) , вероятность вынуть два красных равна произведению вероятностей этих событий (потому что эти события должны произойти одновременно - вероятность совпадения событий равна произведению вероятностей каждого отдельного события! ) 1/2*1/3=1/6. Вероятность вынуть ДВА СИНИХ точно такая же 1/6 (рассуждения те же, только вместо красных - синие) . А вероятность вынуть два шара одного цвета, то есть либо 2 красных, либо 2 синих, равна сумме вероятностей этих событий (поскольку нам достаточно, чтобы произошло ОДНО из ЭТИХ несовместных, то есть не могущих произойти одновременно, событий!) , то есть 1/6+1/6=2/6=1/3. ответ от решения, естественно, не изменяется. Потому что оба решения - ПРАВИЛЬНЫЕ!