Пусть стороны прямоугольника равны х см и у см. Зная, что его диагональ равна 13 см и используя теорему Пифагора, составляем первое уравнение: х²+у²=169 Зная, что периметр прямоугольника равен 34 см (соответственно, полупериметр равен 17 см), составляем второе уравнение: х+у=17 Получили систему уравнений: {х²+у²=169, {х+у=17
Выражаем из второго уравнения х через у (х=17-у) и подставляем это значение х в первое уравнение: (17-у)²+у²=169 289-34у+у²+у²-169=0 2у²-34у+120=0 Делим все на 2. у²-17у+60=0 По теореме Виета: у₁+у₂=17 у₁у₂=60 у₁=5 у₂=12
2)(5+y)²+y(y-7)=25+10y+y²+y²-7y=2y²+3y+25
3)a(4-a)+(4-a)²=(4-a)(a+4-a)=4(4-a)=16-4a