См. рисунок
1. Правильный шестиугольник, состоит из шести равносторонних треугольников.
Найдем сторону шестиугольника AB=r=48/6=8м.
Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD
По теореме Пифагора найдем СD
r²=CD²+DO²=2CD² ⇒ r=CD√2⇒ м
м
2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.
Площадь правильного шестиугольника равна
⇒
см
Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см
3. Площадь сектора равна
≈151 см²
(где n - градусная мера дуги сектора)
√3cosx=sin2x-1
sin2x+cos2x+√3cosx=sin2x-1
cos2x+√3cosx+1=0
2cos²x+√3cosx=0
cosx(2cosx+√3)=0
1)cosx=0
x=π/2+πk
2)2cosx=-√3
cosx=-√3/2
x=±(π-√6)+2πk
x=±5π/6+2πk;k€Z