, точку О будем считать началом координат. Т.е. мы получили ось ОХ, которая разбивает всю плоскость на верхнюю и нижнюю полуплоскости. Если в каждой полуплоскости лежит по 299 точек, то это и есть средняя линия. Если в верхней полуплоскости n точек, а в нижней m и, допустим, m<n, то повернем прямую ОХ вокруг точки О против часовой стрелки до тех пор, пока она первый раз не пройдет через другую точку ( допустим Y). В результате такого поворота, количество точек в каждой полуплоскости либо останется неизменным, либо уменьшится на 1, либо увеличится на 1. Это так, потому что никакие 3 точки не лежат на одной прямой. Причем, если в одной полуплоскости число точек увеличилось на 1, то во второй - уменьшилось на 1, т.к. общее количество точек 598 (не считая тех двух, через которые проходит прямая) остается неизменным. Это значит, что после такого поворота разность между количеством точек в верхней и нижней полуплоскости либо не изменилась, либо уменьшилась/увеличилась на 2. а) log₄(x + 1) + log₄(x+1)² = 3.
ОДЗ: x + 1 > 0, x > - 1.
log₄ (x + 1) + 2log₄(x + 1) = 3,
3log₄(x + 1) = 3,
log₄(x + 1) = 1,
log₄(x + 1) = log₄4,
x + 1 = 4,
x = 3 ∈ ОДЗ.
ответ: 3.
2) log₂/₃ (2 - 5x) < -2,
ОДЗ: 2 - 5x > 0, -5x > -2, x < 0,4.
Т.к. основание 2/3 удовлетворяет неравенству
0 < 2/3 < 1, то перейдем к неравенству
2 - 5x > (2/3)⁻²,
-5x > 9/4 - 2,
-5x > 1/4,
x < -1/20,
x < -0,05,
x ∈ (-∞; -0,05).
С учетом ОДЗ, получим: x ∈ (-∞; -0,05).
ответ: (-∞; -0,05).