М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
elmaz5
elmaz5
31.07.2022 02:48 •  Алгебра

Является ли множество l = {(x1, x2, x3)} векторов за- данного вида линейным подпространством в r^3? если да, то найти базис и размерность этого подпространства r^3 . дополнить базис подпространства l = {(x1, x2 ,x3)} до базиса всего пространства. (2a - 3b, -2a + b, -1 - 3b) (2a - 3b, -2a + b, -a - 3b) необходимо полное решение

👇
Ответ:
MariaVol19
MariaVol19
31.07.2022

Вектор (2a-3b, -2a+b, -1-3b) можно представить в виде

ae1+be2, где e1 = (2,-2, 0), e2 = (-3, 1, -3);

Векторы e1 и e2 линейно независимы, значит векторы образуют двумерное линейное подпространство с базисом {e1, e2}.

Вектор x = (2a-3b, -2a+b, -1-3b) удовлетворяет соотношению -6x1-6x2+4x3=0

Вектор е3 = (6, 6, 4) нельзя представить в виде ae1+be2

Значит он дополняет указанный базис до базиса всего пространства.

Аналогично для второго.

4,8(70 оценок)
Открыть все ответы
Ответ:
tatanavolosnova1
tatanavolosnova1
31.07.2022
Добрый день!

Для решения этого вопроса, сначала нам нужно найти уравнение прямой, проходящей через вершину эллипса и точку (1, 2).

Уравнение прямой можно записать в виде y = mx + b, где m - это угловой коэффициент и b - это свободный член.

Шаг 1: Найдем угловой коэффициент m.

Так как прямая проходит через точку (1, 2), то мы можем использовать формулу для нахождения углового коэффициента, которая гласит:
m = (y2 - y1) / (x2 - x1)

Подставляя значения точек в эту формулу, мы получаем:
m = (2 - y1) / (1 - x1) = (2 - 0) / (1 - 0) = 2 / 1 = 2.

Шаг 2: Найдем свободный член b.

Так как прямая проходит через вершину эллипса (0, 0), мы можем использовать уравнение прямой y = mx + b и подставить значения вершины (0, 0), чтобы найти b. То есть:
0 = 2 * 0 + b
0 = 0 + b
b = 0.

Таким образом, у нас есть уравнение прямой, проходящей через вершину эллипса и точку (1, 2), а именно y = 2x.

Шаг 3: Найдем точку пересечения эллипса и прямой.

Для этого подставим уравнение прямой (y = 2x) в уравнение эллипса (y^2 = 4x):
(2x)^2 = 4x
4x^2 = 4x
4x^2 - 4x = 0
4x(x - 1) = 0.

Отсюда можно найти два значения x: x = 0 и x = 1.

Шаг 4: Найдем соответствующие значения y, подставив найденные значения x в уравнение прямой (y = 2x).

Для x = 0:
y = 2 * 0
y = 0.

Таким образом, первая точка пересечения = (0, 0).

Для x = 1:
y = 2 * 1
y = 2.

Таким образом, вторая точка пересечения = (1, 2).

Шаг 5: Найдем расстояние между этими двумя точками, что будет являться длиной дуги кривой от вершины до точки (1, 2).

Мы можем использовать формулу для нахождения расстояния между двумя точками, которая выглядит так:
d = √[(x2 - x1)^2 + (y2 - y1)^2].

Подставляя значения точек в эту формулу, мы получаем:
d = √[(1 - 0)^2 + (2 - 0)^2] = √[(1)^2 + (2)^2] = √[1 + 4] = √5.

Таким образом, длина дуги кривой от вершины до точки (1, 2) равна √5.

Надеюсь, это объяснение было понятным и подробным! Если у вас есть еще вопросы, пожалуйста, не стесняйтесь задавать!
4,5(20 оценок)
Ответ:
proskurina773
proskurina773
31.07.2022
Формула, задающая линейную функцию, имеет вид y = mx + b, где m и b - это коэффициенты, определяющие наклон прямой и точку пересечения с осью y соответственно.

В данном случае, вариант 4) y = 3x – 8 является формулой, задающей линейную функцию. Почему?
- Коэффициент при x равен 3, что говорит о том, что наклон прямой равен 3. Это значит, что при каждом изменении x на единицу, y изменяется на 3. Например, если x увеличится на 1, то y увеличится на 3.
- Коэффициент b равен -8, что указывает на то, что прямая пересекает ось y в точке с координатами (0, -8). Это означает, что когда x равно 0, y равно -8.

Таким образом, формула y = 3x – 8 задает линейную функцию.
4,5(94 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ