Вкруг радиуса r вписан прямоугольник, одна из сторон которого равна x. является ли площадь прямоугольника s функцией от x? если да, то найдите область определения и множество значений этой функции. найдите s при x=r\3; 4r\3.
1) У прямоугольника, вписанного в окружность, диагональ всегда равна диаметру. D = 2R. По теореме Пифагора, если длина х, то ширина y = √(D^2 - x^2) = √(4R^2 - x^2) Площадь S = xy = x*√(4R^2 - x^2) Область определения 4R^2 - x^2 > 0 x^2 < 4R^2 0 < x < 2R S(R/3) = R/3*√(4R^2 - R^2/9) = R/3*√(35R^2/9) = R/3*R/3*√35 = R^2/9*√35 S(4R/3) = 4R/3*√(4R^2 - 16R^2/9) = 4R/3*√(20R^2/9) = 8R^2/9√5 2) Нет, не является. Имея одно основание х, можно нарисовать как минимум 2 равнобедренных треугольника разной площади. А если х - это длина боковой стороны, то, кажется, треугольников может быть много. Хотя я не уверен. В обоих случаях главное - чтобы вторая сторона (боковая или основание) была не больше диаметра. Это и есть область определения. А вот как найти площадь, я не знаю
Чтобы представить данное произведение двух скобок в виде многочлена, необходимо раскрыть скобки. Сначала первое слагаемое первой скобки умножаем на каждый член второй скобки, затем то же самое проделываем со вторым слагаемым первой скобки: (х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6 Приведём подобные слагаемые: х³-36*6 Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид: х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов: а³-с³=(а-с)(а²+ас+с²) Наше выражение как раз имеет такой вид: (х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
Чтобы представить данное произведение двух скобок в виде многочлена, необходимо раскрыть скобки. Сначала первое слагаемое первой скобки умножаем на каждый член второй скобки, затем то же самое проделываем со вторым слагаемым первой скобки: (х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6 Приведём подобные слагаемые: х³-36*6 Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид: х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов: а³-с³=(а-с)(а²+ас+с²) Наше выражение как раз имеет такой вид: (х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
1) У прямоугольника, вписанного в окружность, диагональ всегда равна диаметру. D = 2R. По теореме Пифагора, если длина х, то ширина y = √(D^2 - x^2) = √(4R^2 - x^2) Площадь S = xy = x*√(4R^2 - x^2) Область определения 4R^2 - x^2 > 0 x^2 < 4R^2 0 < x < 2R S(R/3) = R/3*√(4R^2 - R^2/9) = R/3*√(35R^2/9) = R/3*R/3*√35 = R^2/9*√35 S(4R/3) = 4R/3*√(4R^2 - 16R^2/9) = 4R/3*√(20R^2/9) = 8R^2/9√5 2) Нет, не является. Имея одно основание х, можно нарисовать как минимум 2 равнобедренных треугольника разной площади. А если х - это длина боковой стороны, то, кажется, треугольников может быть много. Хотя я не уверен. В обоих случаях главное - чтобы вторая сторона (боковая или основание) была не больше диаметра. Это и есть область определения. А вот как найти площадь, я не знаю