Объяснение:
посмотри решение внизу
пусть х - одно число, а у - второе, тогда имеем систему уравнений
Из первого уравнения получаем х1=-5 и х2=3. Подставляем во второе, получаем у1=-16 у2=-8
ответ: 2 решения (-5, -16) и (3, -8)
2.Обозначение: х – первое число; у – второе число
Система:
(х+у)/(у-х) = 8
х^2 – y^2 =128
Из первого уравнения у = (7/9)х
Подставляем во второе уравнение.
Получим два корня квадратного уравнения: х1 = 24; х2 = - 24.
Соответственно, у1 = 56/3; у2 = -56/3
ответ: задача имеет два решения:
х1 = 24; у1 = 56/3;
и
х2 = - 24; у2 = -56/3.
1.
Примем всю работу за 1.
Тогда 5*(Х+У) = 1 - первый вариант, а 4*(2*Х+0,5*У) = 1 - второй вариант, где
Х - количество работы первого рабочего
У - количество работы второго рабочего
Исходя из этого получаем
5*(Х+У) = 4*(2*Х+0,5*У)
5Х+5У = 8Х+2У
5У-2У = 8Х-5Х
3У = 3Х , из чего следует что Х=У ( рабочие работают одинаково)
Тогда
5*(Х+Х) = 1
10Х = 1
Х = 0,1
Соответственно всю работу один рабочий выполнит за 10 дней
2. a+b/a-b=8/1
a²-b²=128
a+b=8a-8b из этого ур-я выражаем b, b=7/9a и подставляем его во второе
a²-b²=128
a²-49/81a²=128
81a²-49a²=128·81
32a²=10368
a²=324
a1=-18, a2=18
b1=7/9·(-18)=-14
b2=7/9·18=14
ответ :(-18,-14) или (18,14)
6
(a + √b)/a√b = (a+√b)*√b / a√b*√b = (a√b + b)/ab
9
(a + 2√(2a) + 2)/(√a + √2) = (a + 2√(2a) + 2)(√a - √2) / (√a + √2)(√a - √2) = (a√a + 2√(2a)√a + 2√a - a√2 - 2√(2a)√2 - 2√2) / (√a² - √2²) = (a√a + 2a√2 + 2√a - a√2 - 4√a - 2√2) / (a - 2) = (a√a + a√2 - 2√a - 2√2) / (a-2) = ( a(√a + √2) - 2(√a + √2))/(a - 2) = (a - 2)(√2 + √a)/(a - 2) = √a + √2