М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ivankarmashov2p01nx6
ivankarmashov2p01nx6
25.02.2021 06:28 •  Алгебра

Відриваємо один аркуш у новому відривному календарі високосного року. яка з наведених подій є вірогідною?

👇
Ответ:
ddjd1
ddjd1
25.02.2021

Всі дати будуть менші 32, тому що рік - високосний.

4,5(12 оценок)
Открыть все ответы
Ответ:
veno1
veno1
25.02.2021

III. Формулювання мети і завдань уроку

Формулюємо проблему: як знайти значення виразу

.

де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосу­вання теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.

 

IV. Актуалізація опорних знань та вмінь

Виконання усних вправ

1.     Замініть рівняння рівносильним йому зведеним квадратним рівняння:

а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0

та знайдіть суму і добуток його коренів.

2.     Наведіть приклад квадратного рівняння, в якого:

а) один корінь дорівнює нулю, а другий — не дорівнює нулю;

б) обидва корені дорівнюють нулю;

в) немає дійсних коренів;

г) корені — протилежні ірраціональні числа.

3.     Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює

4,6(87 оценок)
Ответ:
Haos123ks
Haos123ks
25.02.2021
Воспользуемся методом индукции:
1) При n=1: 6+20-1=25 - делится.
2) Пусть при n=k - делится.
3) Надо доказать, что при n=k+1 тоже делится. Подставляем вместо n k+1:

6^(k+1) + 20(k+1) -1 =
6*6^k + 20k + 20 - 1 = (вычетом и прибавим 6^k)
6*6^k + 20k + 20 - 1+ 6^k - 6^k = (сгруппируем слагаемые следующим образом)
(6^k + 20k - 1) + ( 6*6^k + 20 - 6^k).

(6^k + 20k - 1) - делится на 25 по второму пункту. Осталось доказать, что ( 6*6^k + 20 - 6^k) тоже делится на 25.

6*6^k + 20 - 6^k = 6^k * (6 - 1) + 20 = 5 * 6^k + 20 = 5 * (6^k+4). Т. к. (6^k+4) делится на 5 для любого натурального k, то утверждение доказано.
4,5(23 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ