Пусть I сторона будет 3x, II сторона будет 5x, а III сторона- 13x, периметр 126 дм
Решим уравнение:3x+5x+13x=126;
21x=126;
x=126:21;
x=6
I сторона- 3*6=18 дм, II сторона- 5*6=30 дм, III сторона- 13*6=78 дм
как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
Объяснение:
Задание 1.
1. (x-3)(x+4)<0
-∞__+__-4__-__3__+__+∞
x∈(-4;3).
ответ: В).
2. x²-2x-3≥0
x∈(-∞;-1]U[3;+∞).
Задание 2.
2x²-7x-4≤0
2x²-8x+x-4≤0
2x*(x-4)+(x-4)≤0
(x-4)*(2x+1)≤0
-∞__+__-0,5__-__4__+__+∞
x∈[-0,5;4].
ответ: x=0; x=1; x=2; x=3; x=4.
Задание 3.
{2x²-7x-4≤0 {(x-4)(2x+1)≤0 {x∈[-0,5;4]
{5x-2<x-1 {4x<1 |÷4 x<0,25 {x∈(-∞;0,25) ⇒
ответ: x∈[-0,5;0,25).
Задание 4.
ОДЗ: x+4≠0 x≠-4.
-∞__+__-4__-__3__+__+∞
x∈(-4;3].
ответ: x∈(-4;3].
2. 126:21=6дм- одна часть
3. 3×6=18дм- одна сторона
4. 5×6=30дм- вторая сторона
5. 13×6=78дм- третья сторона
ответ: 18дм; 30дм; 78дм.
P.s. рад был