Общее количество вариантов поставить 2 короля на доску равно 63*64=4032 (тк при размещении одного короля на i клетку доски. Другой король должен побывать на остальных 63 возможных позициях. И тд пока первый король не пройдет все 64 позиции. Это и будет общее количество возможных вариантов. Согласно правилам, король не может стоять под шахом другого короля. То есть когда оба короля стоят в соседних клетках по горизонтали вертикали и диагонали. Посчитаем общее количество не соответствующих правилам исходов. Ограничем вокруг поля рамку 8*8 Останется квадратик 6*6 по которому будем перемещать одного из королей сначало по области 6*6. Тогда другой король может стоять около первого на 8 позициях. И так всего клеток черный король пройдет 36. То всего возможных размещений: 36*8=288. Рассмотрим теперь случай, когда черный король будет ходить по рамке 8*8. Но не будет попадать в уголки рамки. То общее число таких клеточек равно: 6*4=24 В данном случае 2 король может находиться с другим королем в 5 позициях,то добавляеться еще 5*24=120 вариантов. И наконец случай когда король будет висеть в углах доски. То у второго короля есть 3 варианта,то есть еще + 3*4=12 вариантов. То всего не благоприятных позиций: 288+120+12=420. Откуда общее число благоприятных вариантов: 4032-420=3612 ответ:3612
Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»