М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nicoguy2
nicoguy2
09.10.2020 01:41 •  Алгебра

Решите уравнения: 1) 3(-1-x)-2x=9 2) 6(4-x)+3x=3 3) -5(-1+9x)-5x=-1 4) 3x-2-3(x+5)= - (2-x) - 5

👇
Ответ:
pughluy
pughluy
09.10.2020
Решение задания смотри на фотографии
Решите уравнения: 1) 3(-1-x)-2x=9 2) 6(4-x)+3x=3 3) -5(-1+9x)-5x=-1 4) 3x-2-3(x+5)= - (2-x) - 5
4,4(22 оценок)
Открыть все ответы
Ответ:
Kursova82
Kursova82
09.10.2020

Имеется в виду, что a, b, c - какие-то функции от x. Обычный сводящийся к рассмотрению нескольких случаев раскрытия модулей, хорош, если легко ищутся промежутки, на которых эти функции имеют определенный знак. Если же это не так, можно применить метод, который можно найти в книжке Голубева "Решение сложных и нестандартных задач по математике" (этот метод там не обосновывается, поскольку любой, берущийся за решение сложных и нестандартных задач, должен такое обоснование придумывать самостоятельно). Постараюсь это обоснование привести здесь. Основой метода служат следующие равносильности:

|a|     |a|b\Leftrightarrow \left [ {{ab} \atop {ab} \atop {-ab}} \right..

Доказывать здесь их не хотелось бы. Скажем, в книжке Мерзляка, Полонского и Якира  "Алгебраический тренажер" они используются без доказательства.  Если эти доказательства кому-то нужны, помещайте такое задание, и я обязательно их приведу. Кстати, для тех, кто забыл, напомню, что фигурной скобкой обозначается система, а квадратной - совокупность.

Переходим к неравенству |a|+|b| Перенеся |b| направо, получаем неравенство первого типа, поэтому оно равносильно системе

\left \{ {{a Снова применяем тот же метод, теперь к каждому из неравенств системы, после чего получаем после перенесения  a влево, систему из четырех неравенств, которую для экономии места и времени для написания я изображу в виде \{\pm a\pm b

Рассуждая аналогично, получаем, что

|a|+|b|c\Leftrightarrow [\pm a\pm bc. Естественно, здесь такое обозначение я использовал для совокупности четырех неравенств,  полученных всевозможными раскрытия модулей.

Наконец, если мы имеем модуль и в правой части, то в случае неравенства |a|+|b|<|c| мы получаем систему \{\pm a\pm b\pm a \pm b, причем каждое из этих неравенств равносильно совокупности двух уравнений, полученных разными раскрытиями модуля  c.

Аналогично решается неравенство |a|+|b|>|c|, только здесь получится не система четырех совокупностей, а совокупность четырех систем.

4,4(26 оценок)
Ответ:
mixrasp2002
mixrasp2002
09.10.2020
1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
4,5(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ