возрастает, а на промежутке
- убывает
, то:
- промежутки возрастания синусоиды
- промежутки убывания синусоиды
и точка
- одна и та же точка на тригонометрическом круге
и 

убывания. Так как это промежуток убывания, то если выполняется
, то будет выполнятся 


, то выполняется 
![[ \frac{3\pi}{2} ; \frac{5\pi}{2}]](/tpl/images/0597/4634/0c4f5.png)
![[- \frac{3\pi}{2} ; -\frac{\pi}{2} ]](/tpl/images/0597/4634/7af0d.png)
![[ \frac{3\pi}{2} ; \frac{5\pi}{2} ]](/tpl/images/0597/4634/5d6a9.png)

15
Объяснение:
В этой задаче важно правильно расставить точки А, Б, В, Г на круге. Обратите внимание, они не обязательно должны идти по порядку! Общая логика такая. Самая большая дуга (в данном случае АБ=60) должна охватывать или точку Г или точку В (см. рисунок), иначе выстроить дуги не получится. В результате, точка А будет лежать напротив точки Б, а точки В и Г автоматически расположатся напротив друг друга (как показано на рисунке).
Далее, по условию задания точно можно обозначить длины дуг АГ=35 и АВ=45. Дуга АБ=60 может пройти как через точку Г, так и через точку В (это нужно выяснить). Аналогично, дуга ВГ может проходить или через точку Б, или через точку А.
Дуга АБ может проходить как через Г, так и через В (результаты должны получаться равными). Если АБ проходит через Г, то сегмент ГБ=60-35=25 и дуга ВБ=40-25=15. Если же дуга АБ проходит через В, то длина ВБ=60-45=15. Все верно.