Чтобы найти экстремумы, решаем уравнение y'(x)=0; y'(x)=3x^2+20x+25; приравниваем к нулю. 3x^2+20x+25=0; D=400-4*3*25=100; x1=(-20+10)/6=-1,(6); x2=(-20-10)/6=-5; Это точки экстремумов. Теперь надо взять вторую производную функции в этих точках. y''(x)=6x+20; y''(x1)=6*(-1.6666)+20=10 (округлённо). Это больше нуля, значит это точка локального минимума функции. y''(x2)=6*(-5)+20=-10 Это меньше нуля, значит это точка локального минимума функции. То есть от -бесконечности до -5 функция возрастает, от -5 до -1,(6) убывает и от -1,(6) до +бесконечности опять возрастает.
x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q:
x₁ + x₂= -p
x₁ · x₂= q
14 + x₂ = 26
x₂=26-14=12
q=14*12=168
x²-26x+168=0 - при желании можно проверить, подставив в уравнение корни, можно для проверки решить через дискриминант.
144-312+168=0
задача
70 м; 110 м
Периметр прямоугольника со сторонами а и b: Р = 2 * (a + b).
Площадь прямоугольника: S = a * b.
Следовательно, получим систему уравнений:
2 * (a + b) = 360.
a * b = 7700.
Решаешь системой уравнений
(a + b) =230
a=7700/b
7700/b+b=230
b^2 – 230 * b + 7700=0