Все задачи на движение требуют для начала вспомнить основную формулу, связывающую скорость, путь и время:
V=S/t/
Задачи на движение по реке чаще всего содержат в себе:
Моторные лодки или катера, обладающие собственным двигателем или судна которые плывут с ручной гребли.
Плот или иные судна, которые могут плыть ТОЛЬКО по течению и со скоростью, равной скорости течения.
Также в таких задачах всегда следует учитывать, что при движении по течению к собственной скорости судна прибавляется скорость течения. А когда движение происходит против течения, наоборот, из собственной скорости судна следует ВЫЧЕСТЬ скорость течения.
Учитывая все выше изложенное составим уравнение для задачи:
Время на весь путь 14 часов.
ВРЕМЯ движения по теч-ю ПЛЮС ВРЕМЯ движ-я против течения = 14ч.
Из основной формулы выразим ВРЕМЯ (t).
t=S/V
t(по теч)=S(по теч) / V(по теч)
t(прот теч)=S(прот теч) / V(прот теч)Пусть х собственная скорость,
тогда (х+2) км/ч скорость по течению реки, а (х-2) км/ч скорость против течения.
Получим
45/(х+2)+45/(х-2)=14
45х-90+45х+90=14х²-56
90х=14х²-56
14х²-90х-56=0
7х²-45х-28=0
D=2025-4*7*(-28)=2809
х=(45+53)/14=7 км/ч собственная скорость спортивной лодки
ответ:7 км/ч
и
Объяснение:
Первый модуль обращается в ноль при x=-2, второй - при .
Пусть сначала
Тогда уравнение принимает вид и, очевидно, не имеет решений.
Пусть теперь
Если , то оба модуля раскрываются с плюсом и уравнение принимает вид:
Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если удовлетворяет системе неравенств
Решение системы:
Если , то уравнение принимает вид
Полученный x будет корнем уравнения, если удовлетворяет системе:
Решение системы:
Пусть, наконец, . Тогда уравнение принимает вид
Полученный x будет корнем уравнения, если удовлетворяет системе:
Эта система не имеет решений.
Теперь пусть , то есть
.
Если , то
Система:
Нет решений.
Если , то
Система:
Решение системы:
И наконец, если , то
Система:
Решение:
Из вышесказанного очевидно, что
При - два решения
При - одно решение
При - нет решений
При - нет решений
При - одно решение
При - два решения
Таким образом, уравнение имеет одно решение при и
Нет Не имеет 2 корня.