2/3; 2
Объяснение:
3y^2-8y+4=0
D=(-8)^2-4*3*4=64-48=16
В уравнении 2 корня, значит
x1 = (-(-8) + )/(2*3) = 12/6 = 2 - первый корень
x2 = (-(-8) - )/(2*3) = 4/6 = 2/3 - второй корень
Как найти дискриминант?
1) Дискриминант квадратного уравнения ax^2+bx+c находится по формуле: b^2-4ac. a; b и c - коэффициенты. В данном случае a=3; b=-8; c=4.
2) Подставляем: D=(-8)^2-4*(3*4)=64-48=16
3) Если D>0, то в уравнении 2 корня, если D=0, то в уравнении 1 корень, если D<0, то в уравнении корней нет
Как найти корни?
Опять же таки берём уравнение вида ax^2+bx+c
Если D>0, то x1 = (-b+)/2a
x2 = (-b-)/2a
Если D=0, то x = -b/2a
Если D<0, то ничего не ищем
P.S. Также есть теоремы Виета и выделения полного квадрата, но они более замороченные. Конечно, проще решать через дискриминант, но если вы хотите увидеть, как решить уравнение другим напишите, я отредактирую ответ, попробую решить другим
Необходимо начертить вектор АВ=(2;4) . Начало вектора выбрать произвольно.
Координаты вектора - это проекции вектора на оси ОХ и ОУ. То есть вектор АВ проектируется на ось ОХ в отрезок , длина которого равна 2 единицам, а на ось ОУ - в отрезок, длина которого 4 единицы. Причём, так как координаты положительные, то направление от проекции начала вектора к проекции конца вектора такое же, как и у осей координат.
Если , например, за начало вектора возьмём точку А(2,1), то от точки А₁(2,0) , которая является проекцией точки А на ось ОХ, отложим вдоль оси ОХ отрезок длиной 2 единицы в направлении оси ОХ, попадём в точку В₁(4,0), которая будет проекцией точки В на ось ОХ. А₁В₁ - проекция вектора АВ на ось ОХ.
Аналогично, от точки А₂(0,1) отложим вдоль оси ОУ отрезок длиной 4 единицы, попадём в точку В₂(0,5) . А₂В₂ - проекция вектора АВ на ось ОУ.
Затем соединим точку А(2,1) с точкой В(4,5), получим искомый вектор АВ=(2,4).
Вот решение, удачного дня)