3) b - a < 2
Объяснение:
По условию a > b. Отсюда получаем следующие равносильные неравенства:
а) a - b >0 или 0 < a - b
б) 0 > b - a или b - a < 0.
Рассмотрим утверждения задачи:
1) a - b < -3
Из этого неравенства в силу а) 0 < a - b получаем:
0 < a - b < -3 или 0 < -3, противоречие, значит неравенство неверное.
2) b - a > 1
Из этого неравенства в силу б) 0 > b - a получаем:
0 > b - a > 1 или 0 > 1, противоречие, значит неравенство неверное.
3) b - a < 2
Так как б) b - a < 0, то
b - a < 0 < 2, значит неравенство верное.
4) Верно 1, 2 и 3
Так как 1) и 2) неверно, то утверждение неверно.
Верны неравенства под номером 1 и 3.
1) a – b > – 3 верно.
По условию a > b, тогда a – b > 0, следовательно, a – b положительное число, положительное число больше любого отрицательного,
поэтому a – b > – 3.
2) b – a > 1 неверно.
Так как число b меньше числа а, то разница между b и a - отрицательное число, поэтому неравенство
b – a > 1 неверно.
3) b – a < 2 верно.
По условию a > b, число b меньше числа а, тогда разница между b и a - отрицательное число, любое отрицательное число меньше положительного. Следовательно, b – a < 2.
Пусть 1 - это длина всего пути
х км/ч - скорость первого автомобиля (ОДЗ: x>0)
1/х час - время, затраченное на весь путь первым автомобилем
1/2 : 30 = 1/60 час - время, затраченное на первую половину пути вторым автомобилем
1/2 : (х+9) = 1/(2х+18) час - время, затраченное на вторую половину пути вторым автомобилем
По условию время, затраченное на весь путь первым автомобилем равно времени, затраченному на весь путь вторым автомобилем, получаем уравнение:
ответ: 36 км/ч