Для вычисления пары чисел которые будут решением этого уравнения мы применим один из решения системы уравнений:
5x - 3y = 0;
3y + 4x = 27.
Осмотрев оба уравнения системы мы лицезреем, что перед переменной y стоят в обеих уравнениях обоюдно противоположные коэффициенты.
Сложим почленно два уравнения системы и получим:
5x + 4x = 0 + 27;
y = (27 - 4x)/3.
Так же из второго уравнения мы выразили переменную y через x.
Решаем 1-ое уравнение системы:
9x = 27;
x = 27 : 9;
x = 3.
Система уравнений:
x = 3;
y = (27 - 4 * 3)/3 = (27 - 12)/3 = 15/3 = 5.
Объяснение:
1) y-2. ОДЗ: y≠2
2) a-1. ОДЗ: a≠1
Объяснение:
№1. (y+2+):
=
:
=
=y-2. ОДЗ: y≠2
№2. (a+1+):
=
:
=
=a-1. ОДЗ: a≠1
ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.
5*(-0,5)^2 * (-1)^3 + 4( -0,5+1)= 5* 0,25 * (-1) + 2 = -1,25 + 2 = 0,75 = 3/4